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Neural Network Toolbox
Design Book

The developers of the Neural Network Toolbox™ software have written
a textbook, Neural Network Design (Hagan, Demuth, and Beale, ISBN
0-9717321-0-8). The book presents the theory of neural networks, discusses
their design and application, and makes considerable use of the MATLAB®

environment and Neural Network Toolbox software. Example programs from
the book are used in various chapters of this user’s guide. (You can find all
the book example programs in the Neural Network Toolbox software by
typing nnd.)

Obtain this book from John Stovall at (303) 492-3648, or by email at
John.Stovall@colorado.edu.

The Neural Network Design textbook includes:

• An Instructor’s Manual for those who adopt the book for a class

• Transparency Masters for class use

If you are teaching a class and want an Instructor’s Manual (with solutions
to the book exercises), contact John Stovall at (303) 492-3648, or by email at
John.Stovall@colorado.edu

To look at sample chapters of the book and to obtain Transparency Masters,
go directly to the Neural Network Design page at:

http://hagan.okstate.edu/nnd.html
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From this link, you can obtain sample book chapters in PDF format and you
can download the Transparency Masters by clicking Transparency Masters
(3.6MB).

You can get the Transparency Masters in PowerPoint or PDF format.
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Introduction
The work flow for the neural network design process has seven primary steps:

1 Collect data

2 Create the network

3 Configure the network

4 Initialize the weights and biases

5 Train the network

6 Validate the network

7 Use the network

This topic discusses the basic ideas behind steps 2, 3, 5, and 7. The details
of these steps come in later topics, as do discussions of steps 4 and 6,
since the fine points are specific to the type of network that you are using.
(Data collection in step 1 generally occurs outside the framework of Neural
Network Toolbox software, but it is discussed in “Multilayer Networks and
Backpropagation Training” on page 2-2.)

The Neural Network Toolbox software uses the network object to store all of
the information that defines a neural network. This topic describes the basic
components of a neural network and shows how they are created and stored
in the network object.

After a neural network has been created, it needs to be configured and
then trained. Configuration involves arranging the network so that it is
compatible with the problem you want to solve, as defined by sample data.
After the network has been configured, the adjustable network parameters
(called weights and biases) need to be tuned, so that the network performance
is optimized. This tuning process is referred to as training the network.
Configuration and training require that the network be provided with
example data. This topic shows how to format the data for presentation to the
network. It also explains network configuration and the two forms of network
training: incremental training and batch training.
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Introduction

There are four different levels at which the Neural Network Toolbox software
can be used. The first level is represented by the GUIs that are described in
“Getting Started with Neural Network Toolbox”. These provide a quick way to
access the power of the toolbox for many problems of function fitting, pattern
recognition, clustering and time series analysis.

The second level of toolbox use is through basic command-line operations. The
command-line functions use simple argument lists with intelligent default
settings for function parameters. (You can override all of the default settings,
for increased functionality.) This topic, and the ones that follow, concentrate
on command-line operations.

The GUIs described in Getting Started can automatically generate MATLAB
code files with the command-line implementation of the GUI operations. This
provides a nice introduction to the use of the command-line functionality.

A third level of toolbox use is customization of the toolbox. This advanced
capability allows you to create your own custom neural networks, while still
having access to the full functionality of the toolbox.

The fourth level of toolbox usage is the ability to modify any of the M-files
contained in the toolbox. Every computational component is written in
MATLAB code and is fully accessible.

The first level of toolbox use (through the GUIs) is described in Getting
Started which also introduces command-line operations. The following topics
will discuss the command-line operations in more detail. The customization of
the toolbox is described in “Define Network Architectures”.
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Neuron Model

Simple Neuron
The fundamental building block for neural networks is the single-input
neuron, such as this example.

There are three distinct functional operations that take place in this example
neuron. First, the scalar input p is multiplied by the scalar weight w to form
the product wp, again a scalar. Second, the weighted input wp is added to
the scalar bias b to form the net input n. (In this case, you can view the bias
as shifting the function f to the left by an amount b. The bias is much like
a weight, except that it has a constant input of 1.) Finally, the net input is
passed through the transfer function f, which produces the scalar output a.
The names given to these three processes are: the weight function, the net
input function and the transfer function.

For many types of neural networks, the weight function is a product of a
weight times the input, but other weight functions (e.g., the distance between
the weight and the input, |w − p|) are sometimes used. (For a list of weight
functions, type help nnweight.) The most common net input function is
the summation of the weighted inputs with the bias, but other operations,
such as multiplication, can be used. (For a list of net input functions, type
help nnnetinput.) “Introduction” on page 5-2 discusses how distance can
be used as the weight function and multiplication can be used as the net
input function. There are also many types of transfer functions. Examples
of various transfer functions are in “Transfer Functions” on page 1-5. (For a
list of transfer functions, type help nntransfer.)
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Note that w and b are both adjustable scalar parameters of the neuron. The
central idea of neural networks is that such parameters can be adjusted so
that the network exhibits some desired or interesting behavior. Thus, you
can train the network to do a particular job by adjusting the weight or bias
parameters.

All the neurons in the Neural Network Toolbox software have provision for a
bias, and a bias is used in many of the examples and is assumed in most of
this toolbox. However, you can omit a bias in a neuron if you want.

Transfer Functions
Many transfer functions are included in the Neural Network Toolbox software.

Two of the most commonly used functions are shown below.

The following figure illustrates the linear transfer function.

Neurons of this type are used in the final layer of multilayer networks that
are used as function approximators. This is shown in “Multilayer Networks
and Backpropagation Training” on page 2-2.

The sigmoid transfer function shown below takes the input, which can have
any value between plus and minus infinity, and squashes the output into
the range 0 to 1.
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This transfer function is commonly used in the hidden layers of multilayer
networks, in part because it is differentiable.

The symbol in the square to the right of each transfer function graph shown
above represents the associated transfer function. These icons replace the
general f in the network diagram blocks to show the particular transfer
function being used.

For a complete list of transfer functions, type help nntransfer. You can also
specify your own transfer functions.

You can experiment with a simple neuron and various transfer functions by
running the example program nnd2n1.

Neuron with Vector Input
The simple neuron can be extended to handle inputs that are vectors. A
neuron with a single R-element input vector is shown below. Here the
individual input elements

p p pR1 2, ,

are multiplied by weights

w w w R1 1 1 2 1, , ,, ,

and the weighted values are fed to the summing junction. Their sum is
simply Wp, the dot product of the (single row) matrix W and the vector p.
(There are other weight functions, in addition to the dot product, such as the
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distance between the row of the weight matrix and the input vector, as in
“Introduction” on page 5-2.)

The neuron has a bias b, which is summed with the weighted inputs to form
the net input n. (In addition to the summation, other net input functions can
be used, such as the multiplication that is used in “Introduction” on page 5-2.)
The net input n is the argument of the transfer function f.

n w p w p w p bR R= + + + +1 1 1 1 2 2 1, , ,

This expression can, of course, be written in MATLAB code as

n = W*p + b

However, you will seldom be writing code at this level, for such code is already
built into functions to define and simulate entire networks.

Abbreviated Notation
The figure of a single neuron shown above contains a lot of detail. When you
consider networks with many neurons, and perhaps layers of many neurons,
there is so much detail that the main thoughts tend to be lost. Thus, the
authors have devised an abbreviated notation for an individual neuron. This
notation, which is used later in circuits of multiple neurons, is shown here.
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Here the input vector p is represented by the solid dark vertical bar at the
left. The dimensions of p are shown below the symbol p in the figure as R
× 1. (Note that a capital letter, such as R in the previous sentence, is used
when referring to the size of a vector.) Thus, p is a vector of R input elements.
These inputs postmultiply the single-row, R-column matrix W. As before, a
constant 1 enters the neuron as an input and is multiplied by a scalar bias
b. The net input to the transfer function f is n, the sum of the bias b and the
productWp. This sum is passed to the transfer function f to get the neuron’s
output a, which in this case is a scalar. Note that if there were more than one
neuron, the network output would be a vector.

A layer of a network is defined in the previous figure. A layer includes the
weights, the multiplication and summing operations (here realized as a vector
product Wp), the bias b, and the transfer function f. The array of inputs,
vector p, is not included in or called a layer.

As with the “Simple Neuron” on page 1-4, there are three operations that
take place in the layer: the weight function (matrix multiplication, or dot
product, in this case), the net input function (summation, in this case), and
the transfer function.

Each time this abbreviated network notation is used, the sizes of the matrices
are shown just below their matrix variable names. This notation will allow
you to understand the architectures and follow the matrix mathematics
associated with them.

As discussed in “Transfer Functions” on page 1-5, when a specific transfer
function is to be used in a figure, the symbol for that transfer function replaces
the f shown above. Here are some examples.
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You can experiment with a two-element neuron by running the example
program nnd2n2.
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Network Architectures
Two or more of the neurons shown earlier can be combined in a layer, and a
particular network could contain one or more such layers. First consider a
single layer of neurons.

One Layer of Neurons
A one-layer network with R input elements and S neurons follows.

In this network, each element of the input vector p is connected to each
neuron input through the weight matrix W. The ith neuron has a summer
that gathers its weighted inputs and bias to form its own scalar output n(i).
The various n(i) taken together form an S-element net input vector n. Finally,
the neuron layer outputs form a column vector a. The expression for a is
shown at the bottom of the figure.

Note that it is common for the number of inputs to a layer to be different
from the number of neurons (i.e., R is not necessarily equal to S). A layer is
not constrained to have the number of its inputs equal to the number of its
neurons.
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You can create a single (composite) layer of neurons having different transfer
functions simply by putting two of the networks shown earlier in parallel.
Both networks would have the same inputs, and each network would create
some of the outputs.

The input vector elements enter the network through the weight matrixW.

W 





















w w w

w w w

w w w

R

R

S S S R

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,







Note that the row indices on the elements of matrixW indicate the destination
neuron of the weight, and the column indices indicate which source is the
input for that weight. Thus, the indices in w1,2 say that the strength of the
signal from the second input element to the first (and only) neuron is w1,2.

The S neuron R-input one-layer network also can be drawn in abbreviated
notation.

Here p is an R-length input vector,W is an S × Rmatrix, a and b are S-length
vectors. As defined previously, the neuron layer includes the weight matrix,
the multiplication operations, the bias vector b, the summer, and the transfer
function blocks.
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Inputs and Layers
To describe networks having multiple layers, the notation must be extended.
Specifically, it needs to make a distinction between weight matrices that are
connected to inputs and weight matrices that are connected between layers.
It also needs to identify the source and destination for the weight matrices.

We will call weight matrices connected to inputs input weights; we will
call weight matrices connected to layer outputs layer weights. Further,
superscripts are used to identify the source (second index) and the destination
(first index) for the various weights and other elements of the network. To
illustrate, the one-layer multiple input network shown earlier is redrawn in
abbreviated form here.

As you can see, the weight matrix connected to the input vector p is labeled
as an input weight matrix (IW1,1) having a source 1 (second index) and a
destination 1 (first index). Elements of layer 1, such as its bias, net input, and
output have a superscript 1 to say that they are associated with the first layer.

“Multiple Layers of Neurons” on page 1-12 uses layer weight (LW) matrices
as well as input weight (IW) matrices.

Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias
vector b, and an output vector a. To distinguish between the weight matrices,
output vectors, etc., for each of these layers in the figures, the number of the
layer is appended as a superscript to the variable of interest. You can see the
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use of this layer notation in the three-layer network shown next, and in the
equations at the bottom of the figure.

The network shown above has R1 inputs, S1 neurons in the first layer, S2

neurons in the second layer, etc. It is common for different layers to have
different numbers of neurons. A constant input 1 is fed to the bias for each
neuron.

Note that the outputs of each intermediate layer are the inputs to the
following layer. Thus layer 2 can be analyzed as a one-layer network with S1

inputs, S2 neurons, and an S2 × S1 weight matrix W2. The input to layer 2
is a1; the output is a2. Now that all the vectors and matrices of layer 2 have
been identified, it can be treated as a single-layer network on its own. This
approach can be taken with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces
the network output is called an output layer. All other layers are called
hidden layers. The three-layer network shown earlier has one output layer
(layer 3) and two hidden layers (layer 1 and layer 2). Some authors refer to
the inputs as a fourth layer. This toolbox does not use that designation.
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The architecture of a multilayer network with a single input vector can be
specified with the notation R − S1 − S2 −...− SM, where the number of elements
of the input vector and the number of neurons in each layer are specified.

The same three-layer network can also be drawn using abbreviated notation.

Multiple-layer networks are quite powerful. For instance, a network of two
layers, where the first layer is sigmoid and the second layer is linear, can be
trained to approximate any function (with a finite number of discontinuities)
arbitrarily well. This kind of two-layer network is used extensively in
“Multilayer Networks and Backpropagation Training” on page 2-2.

Here it is assumed that the output of the third layer, a3, is the network output
of interest, and this output is labeled as y. This notation is used to specify
the output of multilayer networks.

Input and Output Processing Functions
Network inputs might have associated processing functions. Processing
functions transform user input data to a form that is easier or more efficient
for a network.

For instance, mapminmax transforms input data so that all values fall
into the interval [−1, 1]. This can speed up learning for many networks.
removeconstantrows removes the rows of the input vector that correspond
to input elements that always have the same value, because these input
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elements are not providing any useful information to the network. The third
common processing function is fixunknowns, which recodes unknown data
(represented in the user’s data with NaN values) into a numerical form for the
network. fixunknowns preserves information about which values are known
and which are unknown.

Similarly, network outputs can also have associated processing functions.
Output processing functions are used to transform user-provided target
vectors for network use. Then, network outputs are reverse-processed using
the same functions to produce output data with the same characteristics as
the original user-provided targets.

Both mapminmax and removeconstantrows are often associated with
network outputs. However, fixunknowns is not. Unknown values in targets
(represented by NaN values) do not need to be altered for network use.

Processing functions are described in more detail in “Preprocessing and
Postprocessing” on page 2-8.
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Network Object
The easiest way to create a neural network is to use one of the network
creation functions. To investigate how this is done, you can create a simple,
two-layer feedforward network, using the command feedforwardnet:

net = feedforwardnet

This command will display the following:

net =

Neural Network

name: 'Feed-Forward Neural Network'
efficiencyMode: 'speed'

efficiencyOptions: .cacheDelayedInputs, .flattenTime,
.memoryReduction

userdata: (your custom info)

dimensions:

numInputs: 1
numLayers: 2

numOutputs: 1
numInputDelays: 0
numLayerDelays: 0

numFeedbackDelays: 0
numWeightElements: 10

sampleTime: 1

connections:

biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]

outputConnect: [0 1]

subobjects:
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inputs: {1x1 cell array of 1 input}
layers: {2x1 cell array of 2 layers}

outputs: {1x2 cell array of 1 output}
biases: {2x1 cell array of 2 biases}

inputWeights: {2x1 cell array of 1 weight}
layerWeights: {2x2 cell array of 1 weight}

functions:

adaptFcn: 'adaptwb'
adaptParam: (none)

derivFcn: 'defaultderiv'
divideFcn: 'dividerand'

divideParam: .trainRatio, .valRatio, .testRatio
divideMode: 'sample'

initFcn: 'initlay'
performFcn: 'mse'

performParam: .regularization, .normalization
plotFcns: {'plotperform', plottrainstate, ploterrhist,

plotregression}
plotParams: {1x4 cell array of 4 params}

trainFcn: 'trainlm'
trainParam: .showWindow, .showCommandLine, .show, .epochs,

.time, .goal, .min_grad, .max_fail, .mu, .mu_dec,

.mu_inc, .mu_max

weight and bias values:

IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors

methods:

adapt: Learn while in continuous use
configure: Configure inputs & outputs

gensim: Generate Simulink model
init: Initialize weights & biases

perform: Calculate performance
sim: Evaluate network outputs given inputs
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train: Train network with examples
view: View diagram

unconfigure: Unconfigure inputs & outputs

evaluate: outputs = net(inputs)

This display is an overview of the network object, which is used to store all of
the information that defines a neural network. There is a lot of detail here,
but there are a few key sections that can help you to see how the network
object is organized.

The dimensions section stores the overall structure of the network. Here you
can see that there is one input to the network (although the one input can be
a vector containing many elements), one network output and two layers.

The connections section stores the connections between components of the
network. For example, here there is a bias connected to each layer, the input
is connected to layer 1, and the output comes from layer 2. You can also see
that layer 1 is connected to layer 2. (The rows of net.layerConnect represent
the destination layer, and the columns represent the source layer. A one in
this matrix indicates a connection, and a zero indicates a lack of connection.
For this example, there is a single one in the 2,1 element of the matrix.)

The key subobjects of the network object are inputs, layers, outputs,
biases, inputWeights and layerWeights. View the layers subobject for the
first layer with the command

net.layers{1}

This will display

Neural Network Layer

name: 'Hidden'
dimensions: 10

distanceFcn: (none)
distanceParam: (none)

distances: []
initFcn: 'initnw'

netInputFcn: 'netsum'

1-18



Network Object

netInputParam: (none)
positions: []

range: [10x2 double]
size: 10

topologyFcn: (none)
transferFcn: 'tansig'

transferParam: (none)
userdata: (your custom info)

The number of neurons in this layer is 20, which is the default size for the
feedforwardnet command. The net input function is netsum (summation)
and the transfer function is the tansig. If you wanted to change the transfer
function to logsig, for example, you could execute the command:

net.layers{1}.transferFcn = 'logsig';

To view the layerWeights subobject for the weight between layer 1 and layer
2, use the command:

net.layerWeights{2,1}

This produces the following response.

Neural Network Weight

delays: 0
initFcn: (none)

initConfig: .inputSize
learn: true

learnFcn: 'learngdm'
learnParam: .lr, .mc

size: [0 10]
weightFcn: 'dotprod'

weightParam: (none)
userdata: (your custom info)

The weight function is dotprod, which represents standard matrix
multiplication (dot product). Note that the size of this layer weight is 0 by
20. The reason that we have zero rows is because the network has not yet
been configured for a particular data set. The number of output neurons is
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determined by the number of elements in your target vector. During the
configuration process, you will provide the network with example inputs and
targets, and then the number of output neurons can be assigned.

This gives you some idea of how the network object is organized. For many
applications, you will not need to be concerned about making changes directly
to the network object, since that is taken care of by the network creation
functions. It is usually only when you want to override the system defaults
that it is necessary to access the network object directly. Later topics will
show how this is done for particular networks and training methods.

If you would like to investigate the network object in more detail, you will find
that the object listings, such as the one shown above, contains links to help
files on each subobject. Just click the links, and you can selectively investigate
those parts of the object that are of interest to you.
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Configuration
After a neural network has been created, it must be configured. The
configuration step consists of examining input and target data, setting the
network’s input and output sizes to match the data, and choosing settings for
processing inputs and outputs that will enable best network performance. The
configuration step is normally done automatically, when the training function
is called. However, it can be done manually, by using the configuration
function. For example, to configure the network you created previously to
approximate a sine function, issue the following commands:

p = -2:.1:2;
t = sin(pi*p/2);
net1 = configure(net,p,t);

You have provided the network with an example set of inputs and targets
(desired network outputs). With this information, the configure function can
set the network input and output sizes to match the data.

After the configuration, if you look again at the weight between layer 1 and
layer 2, you can see that the dimension of the weight is 1 by 20. This is
because the target for this network is a scalar.

net1.layerWeights{2,1}

Neural Network Weight

delays: 0
initFcn: (none)

initConfig: .inputSize
learn: true

learnFcn: 'learngdm'
learnParam: .lr, .mc

size: [1 10]
weightFcn: 'dotprod'

weightParam: (none)
userdata: (your custom info)
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In addition to setting the appropriate dimensions for the weights, the
configuration step also defines the settings for the processing of inputs and
outputs. The input processing can be located in the inputs subobject:

net1.inputs{1}

Neural Network Input

name: 'Input'
feedbackOutput: []

processFcns: {'removeconstantrows', mapminmax}
processParams: {1x2 cell array of 2 params}

processSettings: {1x2 cell array of 2 settings}
processedRange: [1x2 double]
processedSize: 1

range: [1x2 double]
size: 1

userdata: (your custom info)

Before the input is applied to the network, it will be processed by two
functions: removeconstantrows and mapminmax. These are discussed fully
in “Multilayer Networks and Backpropagation Training” on page 2-2 so
we won’t address the particulars here. These processing functions may
have some processing parameters, which are contained in the subobject
net1.inputs{1}.processParam. These have default values that you
can override. The processing functions can also have configuration
settings that are dependent on the sample data. These are contained in
net1.inputs{1}.processSettings and are set during the configuration
process. For example, the mapminmax processing function normalizes the data
so that all inputs fall in the range [−1, 1]. Its configuration settings include
the minimum and maximum values in the sample data, which it needs to
perform the correct normalization. This will be discussed in much more depth
in “Multilayer Networks and Backpropagation Training” on page 2-2.

As a general rule, we use the term “parameter,” as in process parameters,
training parameters, etc., to denote constants that have default values
that are assigned by the software when the network is created (and which
you can override). We use the term “configuration setting,” as in process
configuration setting, to denote constants that are assigned by the software
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from an analysis of sample data. These settings do not have default values,
and should not generally be overridden.
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Data Structures
This section discusses how the format of input data structures affects the
simulation of networks. It starts with static networks, and then continues
with dynamic networks. The following section describes how the format of the
data structures affects network training.

There are two basic types of input vectors: those that occur concurrently
(at the same time, or in no particular time sequence), and those that occur
sequentially in time. For concurrent vectors, the order is not important, and if
there were a number of networks running in parallel, you could present one
input vector to each of the networks. For sequential vectors, the order in
which the vectors appear is important.

Simulation with Concurrent Inputs in a Static
Network
The simplest situation for simulating a network occurs when the network to
be simulated is static (has no feedback or delays). In this case, you need not
be concerned about whether or not the input vectors occur in a particular time
sequence, so you can treat the inputs as concurrent. In addition, the problem
is made even simpler by assuming that the network has only one input vector.
Use the following network as an example.

To set up this linear feedforward network, use the following commands:

net = linearlayer;
net.inputs{1}.size = 2;

1-24



Data Structures

net.layers{1}.dimensions = 1;

For simplicity, assign the weight matrix and bias to beW = [1 2] and b = [0].

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent
vectors:

p p p p1 2 3 4
1
2

2
1

2
3

3
1

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥, , ,

Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

You can now simulate the network:

A = net(P)
A =

5 4 8 5

A single matrix of concurrent vectors is presented to the network, and the
network produces a single matrix of concurrent vectors as output. The
result would be the same if there were four networks operating in parallel
and each network received one of the input vectors and produced one of the
outputs. The ordering of the input vectors is not important, because they do
not interact with each other.

Simulation with Sequential Inputs in a Dynamic
Network
When a network contains delays, the input to the network would normally be
a sequence of input vectors that occur in a certain time order. To illustrate
this case, the next figure shows a simple network that contains one delay.
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The following commands create this network:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;

Assign the weight matrix to be W = [1 2].

The command is:

net.IW{1,1} = [1 2];

Suppose that the input sequence is:

p p p p1 2 3 41 2 3 4= [ ] = [ ] = [ ] = [ ], , ,

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

You can now simulate the network:

A = net(P)
A =

[1] [4] [7] [10]
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You input a cell array containing a sequence of inputs, and the network
produces a cell array containing a sequence of outputs. The order of the inputs
is important when they are presented as a sequence. In this case, the current
output is obtained by multiplying the current input by 1 and the preceding
input by 2 and summing the result. If you were to change the order of the
inputs, the numbers obtained in the output would change.

Simulation with Concurrent Inputs in a Dynamic
Network
If you were to apply the same inputs as a set of concurrent inputs instead
of a sequence of inputs, you would obtain a completely different response.
(However, it is not clear why you would want to do this with a dynamic
network.) It would be as if each input were applied concurrently to a separate
parallel network. For the previous example, “Simulation with Sequential
Inputs in a Dynamic Network” on page 1-25, if you use a concurrent set of
inputs you have

p p p p1 2 3 41 2 3 4= [ ] = [ ] = [ ] = [ ], , ,

which can be created with the following code:

P = [1 2 3 4];

When you simulate with concurrent inputs, you obtain

A = net(P)
A =

1 2 3 4

The result is the same as if you had concurrently applied each one of the
inputs to a separate network and computed one output. Note that because
you did not assign any initial conditions to the network delays, they were
assumed to be 0. For this case the output is simply 1 times the input, because
the weight that multiplies the current input is 1.

In certain special cases, you might want to simulate the network response to
several different sequences at the same time. In this case, you would want to
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present the network with a concurrent set of sequences. For example, suppose
you wanted to present the following two sequences to the network:

p p p p
p p

1 1 1 1

2 2

1 1 2 2 3 3 4 4
1 4 2 3
( ) , ( ) , ( ) , ( )
( ) , ( )

= [ ] = [ ] = [ ] = [ ]
= [ ] = [ ],, ( ) , ( )p p2 23 2 4 1= [ ] = [ ]

The input P should be a cell array, where each element of the array contains
the two elements of the two sequences that occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

You can now simulate the network:

A = net(P);

The resulting network output would be

A = {[1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence
produced by the first input sequence, which was the one used in an earlier
example. The second column of each matrix makes up the output sequence
produced by the second input sequence. There is no interaction between the
two concurrent sequences. It is as if they were each applied to separate
networks running in parallel.

The following diagram shows the general format for the network input P
when there are Q concurrent sequences of TS time steps. It covers all cases
where there is a single input vector. Each element of the cell array is a matrix
of concurrent vectors that correspond to the same point in time for each
sequence. If there are multiple input vectors, there will be multiple rows
of matrices in the cell array.
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In this section, you apply sequential and concurrent inputs to dynamic
networks. In “Simulation with Concurrent Inputs in a Static Network”
on page 1-24, you applied concurrent inputs to static networks. It is also
possible to apply sequential inputs to static networks. It does not change the
simulated response of the network, but it can affect the way in which the
network is trained. This will become clear in “Training Styles (Adapt and
Train)” on page 1-30.
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Training Styles (Adapt and Train)
This section describes two different styles of training. In incremental
training the weights and biases of the network are updated each time an
input is presented to the network. In batch training the weights and biases
are only updated after all the inputs are presented. The batch training
methods are generally more efficient in the MATLAB environment, and they
are emphasized in the Neural Network Toolbox software, but there some
applications where incremental training can be useful, so that paradigm is
implemented as well.

Incremental Training with adapt
Incremental training can be applied to both static and dynamic networks,
although it is more commonly used with dynamic networks, such as adaptive
filters. This section illustrates how incremental training is performed on
both static and dynamic networks.

Incremental Training of Static Networks
Consider again the static network used for the first example. You want to
train it incrementally, so that the weights and biases are updated after each
input is presented. In this case you use the function adapt, and the inputs
and targets are presented as sequences.

Suppose you want to train the network to create the linear function:

t p p= +2 1 2

Then for the previous inputs,
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the targets would be

t t t t1 2 3 44 5 7 7= [ ] = [ ] = [ ] = [ ], , ,
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For incremental training, you present the inputs and targets as sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

First, set up the network with zero initial weights and biases. Also, set the
initial learning rate to zero to show the effect of incremental training.

net = linearlayer(0,0);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Recall from “Simulation with Concurrent Inputs in a Static Network” on page
1-24 that, for a static network, the simulation of the network produces the
same outputs whether the inputs are presented as a matrix of concurrent
vectors or as a cell array of sequential vectors. However, this is not true when
training the network. When you use the adapt function, if the inputs are
presented as a cell array of sequential vectors, then the weights are updated
as each input is presented (incremental mode). As shown in the next section,
if the inputs are presented as a matrix of concurrent vectors, then the weights
are updated only after all inputs are presented (batch mode).

You are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs remain zero, because the learning rate is zero, and the
weights are not updated. The errors are equal to the targets:

a = [0] [0] [0] [0]
e = [4] [5] [7] [7]

If you now set the learning rate to 0.1 you can see how the network is adjusted
as each input is presented:

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1,1}.learnParam.lr = 0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0] [2] [6] [5.8]
e = [4] [3] [1] [1.2]
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The first output is the same as it was with zero learning rate, because no
update is made until the first input is presented. The second output is
different, because the weights have been updated. The weights continue to be
modified as each error is computed. If the network is capable and the learning
rate is set correctly, the error is eventually driven to zero.

Incremental Training with Dynamic Networks
You can also train dynamic networks incrementally. In fact, this would be
the most common situation.

To train the network incrementally, present the inputs and targets as
elements of cell arrays. Here are the initial input Pi and the inputs P and
targets T as elements of cell arrays.

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Take the linear network with one delay at the input, as used in a previous
example. Initialize the weights to zero and set the learning rate to 0.1.

net = linearlayer([0 1],0.1);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

You want to train the network to create the current output by summing the
current and the previous inputs. This is the same input sequence you used
in the previous example with the exception that you assign the first term in
the sequence as the initial condition for the delay. You can now sequentially
train the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [7.98]
e = [3] [2.6] [-0.98]

The first output is zero, because the weights have not yet been updated. The
weights change at each subsequent time step.
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Batch Training
Batch training, in which weights and biases are only updated after all the
inputs and targets are presented, can be applied to both static and dynamic
networks. Both types of networks are discussed in this section.

Batch Training with Static Networks
Batch training can be done using either adapt or train, although train is
generally the best option, because it typically has access to more efficient
training algorithms. Incremental training is usually done with adapt; batch
training is usually done with train.

For batch training of a static network with adapt, the input vectors must be
placed in one matrix of concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Begin with the static network used in previous examples. The learning rate
is set to 0.01.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

When you call adapt, it invokes trains (the default adaption function for the
linear network) and learnwh (the default learning function for the weights
and biases). trains uses Widrow-Hoff learning.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are
not updated until all the training set has been presented. If you display the
weights, you find

net.IW{1,1}
ans = 0.4900 0.4100

net.b{1}

1-33



1 Network Objects, Data, and Training Styles

ans =
0.2300

This is different from the result after one pass of adapt with incremental
updating.

Now perform the same batch training using train. Because the Widrow-Hoff
rule can be used in incremental or batch mode, it can be invoked by adapt or
train. (There are several algorithms that can only be used in batch mode (e.g.,
Levenberg-Marquardt), so these algorithms can only be invoked by train.)

For this case, the input vectors can be in a matrix of concurrent vectors
or in a cell array of sequential vectors. Because the network is static and
because train always operates in batch mode, train converts any cell
array of sequential vectors to a matrix of concurrent vectors. Concurrent
mode operation is used whenever possible because it has a more efficient
implementation in MATLAB code:

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

The network is set up in the same way.

net = linearlayer(0,0.01);
net = configure(net,P,T);
net.IW{1,1} = [0 0];
net.b{1} = 0;

Now you are ready to train the network. Train it for only one epoch, because
you used only one pass of adapt. The default training function for the linear
network is trainb, and the default learning function for the weights and
biases is learnwh, so you should get the same results obtained using adapt in
the previous example, where the default adaption function was trains.

net.trainParam.epochs = 1;
net = train(net,P,T);

If you display the weights after one epoch of training, you find

net.IW{1,1}
ans = 0.4900 0.4100
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net.b{1}
ans =

0.2300

This is the same result as the batch mode training in adapt. With static
networks, the adapt function can implement incremental or batch training,
depending on the format of the input data. If the data is presented as a
matrix of concurrent vectors, batch training occurs. If the data is presented
as a sequence, incremental training occurs. This is not true for train, which
always performs batch training, regardless of the format of the input.

Batch Training with Dynamic Networks
Training static networks is relatively straightforward. If you use train
the network is trained in batch mode and the inputs are converted to
concurrent vectors (columns of a matrix), even if they are originally passed as
a sequence (elements of a cell array). If you use adapt, the format of the input
determines the method of training. If the inputs are passed as a sequence,
then the network is trained in incremental mode. If the inputs are passed as
concurrent vectors, then batch mode training is used.

With dynamic networks, batch mode training is typically done with train
only, especially if only one training sequence exists. To illustrate this,
consider again the linear network with a delay. Use a learning rate of 0.02
for the training. (When using a gradient descent algorithm, you typically use
a smaller learning rate for batch mode training than incremental training,
because all the individual gradients are summed before determining the step
change to the weights.)

net = linearlayer([0 1],0.02);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.IW{1,1} = [0 0];
net.biasConnect = 0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

1-35



1 Network Objects, Data, and Training Styles

You want to train the network with the same sequence used for the
incremental training earlier, but this time you want to update the weights
only after all the inputs are applied (batch mode). The network is simulated
in sequential mode, because the input is a sequence, but the weights are
updated in batch mode.

net = train(net,P,T,Pi);

The weights after one epoch of training are

net.IW{1,1}
ans = 0.9000 0.6200

These are different weights than you would obtain using incremental training,
where the weights would be updated three times during one pass through
the training set. For batch training the weights are only updated once in
each epoch.

Training Feedback
The showWindow parameter allows you to specify whether a training window
is visible when you train. The training window appears by default. Two other
parameters, showCommandLine and show, determine whether command-line
output is generated and the number of epochs between command-line
feedback during training. For instance, this code turns off the training
window and gives you training status information every 35 epochs when the
network is later trained with train:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;
net.trainParam.show= 35;

Sometimes it is convenient to disable all training displays. To do that, turn off
both the training window and command-line feedback:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = false;

The training window appears automatically when you train. Use the
nntraintool function to manually open and close the training window.
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nntraintool
nntraintool('close')

1-37



1 Network Objects, Data, and Training Styles

1-38



2

Multilayer Networks and
Backpropagation Training

• “Multilayer Networks and Backpropagation Training” on page 2-2

• “Multilayer Neural Network Architecture” on page 2-4

• “Collect and Prepare the Data” on page 2-8

• “Create, Configure, and Initialize the Network” on page 2-14

• “Train the Network” on page 2-16

• “Post-Training Analysis (Network Validation)” on page 2-24

• “Use the Network” on page 2-29

• “Automatic Code Generation” on page 2-30

• “Limitations and Cautions” on page 2-31



2 Multilayer Networks and Backpropagation Training

Multilayer Networks and Backpropagation Training
The multilayer feedforward neural network is the workhorse of the Neural
Network Toolbox software. It can be used for both function fitting and pattern
recognition problems. With the addition of a tapped delay line, it can also be
used for prediction problems, as discussed in “Focused Time-Delay Neural
Network (timedelaynet)” on page 3-13. This topic shows how you can use a
multilayer network. It also illustrates the basic procedures for designing
any neural network.

Note The training functions described in this topic are not limited to
multilayer networks. They can be used to train arbitrary architectures (even
custom networks), as long as their components are differentiable.

The work flow for the general neural network design process has seven
primary steps:

1 Collect data

2 Create the network

3 Configure the network

4 Initialize the weights and biases

5 Train the network

6 Validate the network (post-training analysis)

7 Use the network

Step 1 might happen outside the framework of Neural Network Toolbox
software, but this step is critical to the success of the design process.

Details of this workflow are discussed in the following sections:

• “Multilayer Neural Network Architecture” on page 2-4

• “Collect and Prepare the Data” on page 2-8
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• “Create, Configure, and Initialize the Network” on page 2-14

• “Train the Network” on page 2-16

• “Post-Training Analysis (Network Validation)” on page 2-24

• “Use the Network” on page 2-29

• “Automatic Code Generation” on page 2-30

• “Limitations and Cautions” on page 2-31
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Multilayer Neural Network Architecture

Neuron Model (logsig, tansig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted
with an appropriate w. The sum of the weighted inputs and the bias forms the
input to the transfer function f. Neurons can use any differentiable transfer
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.

The function logsig generates outputs between 0 and 1 as the neuron’s net
input goes from negative to positive infinity.

Alternatively, multilayer networks can use the tan-sigmoid transfer function
tansig.
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Sigmoid output neurons are often used for pattern recognition problems,
while linear output neurons are used for function fitting problems. The linear
transfer function purelin is shown below.

The three transfer functions described here are the most commonly used
transfer functions for multilayer networks, but other differentiable transfer
functions can be created and used if desired.

Feedforward Network
A single-layer network of S logsig neurons having R inputs is shown below
in full detail on the left and with a layer diagram on the right.
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Feedforward networks often have one or more hidden layers of sigmoid
neurons followed by an output layer of linear neurons. Multiple layers
of neurons with nonlinear transfer functions allow the network to learn
nonlinear relationships between input and output vectors. The linear output
layer is most often used for function fitting (or nonlinear regression) problems.

On the other hand, if you want to constrain the outputs of a network (such as
between 0 and 1), then the output layer should use a sigmoid transfer function
(such as logsig). This is the case when the network is used for pattern
recognition problems (in which a decision is being made by the network).

For multiple-layer networks the layer number determines the superscript
on the weight matrix. The appropriate notation is used in the two-layer
tansig/purelin network shown next.
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This network can be used as a general function approximator. It can
approximate any function with a finite number of discontinuities arbitrarily
well, given sufficient neurons in the hidden layer.

Now that the architecture of the multilayer network has been defined, the
design process is described in the following sections.
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Collect and Prepare the Data
Before beginning the network design process, you first collect and prepare
sample data. It is generally difficult to incorporate prior knowledge into a
neural network, therefore the network can only be as accurate as the data
that are used to train the network.

It is important that the data cover the range of inputs for which the network
will be used. Multilayer networks can be trained to generalize well within the
range of inputs for which they have been trained. However, they do not have
the ability to accurately extrapolate beyond this range, so it is important that
the training data span the full range of the input space.

After the data have been collected, there are two steps that need to be
performed before the data are used to train the network: the data need to be
preprocessed, and they need to be divided into subsets. The next two sections
describe these two steps.

Preprocessing and Postprocessing
Neural network training can be made more efficient if you perform certain
preprocessing steps on the network inputs and targets. This section describes
several preprocessing routines that you can use. (The most common of these
are provided automatically when you create a network, and they become part
of the network object, so that whenever the network is used, the data coming
into the network is preprocessed in the same way.)

For example, in multilayer networks, sigmoid transfer functions are generally
used in the hidden layers. These functions become essentially saturated when
the net input is greater than three (exp (−3) 0.05). If this happens at the
beginning of the training process, the gradients will be very small, and the
network training will be very slow. In the first layer of the network, the net
input is a product of the input times the weight plus the bias. If the input is
very large, then the weight must be very small in order to prevent the transfer
function from becoming saturated. It is standard practice to normalize the
inputs before applying them to the network.

Generally, the normalization step is applied to both the input vectors and the
target vectors in the data set. In this way, the network output always falls
into a normalized range. The network output can then be reverse transformed
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back into the units of the original target data when the network is put to
use in the field.

It is easiest to think of the neural network as having a preprocessing block
that appears between the input and the first layer of the network and a
postprocessing block that appears between the last layer of the network and
the output, as shown in the following figure.

Most of the network creation functions in the toolbox, including the multilayer
network creation functions, such as feedforwardnet, automatically assign
processing functions to your network inputs and outputs. These functions
transform the input and target values you provide into values that are better
suited for network training.

You can override the default input and output processing functions by
adjusting network properties after you create the network.

To see a cell array list of processing functions assigned to the input of a
network, access this property:

net.inputs{1}.processFcns

where the index 1 refers to the first input vector. (There is only one input
vector for the feedforward network.) To view the processing functions
returned by the output of a two-layer network, access this network property:

net.outputs{2}.processFcns

where the index 2 refers to the output vector coming from the second layer.
(For the feedforward network, there is only one output vector, and it comes
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from the final layer.) You can use these properties to change the processing
functions that you want your network to apply to the inputs and outputs.
However, the defaults usually provide excellent performance.

Several processing functions have parameters that customize their operation.
You can access or change the parameters of the ith input processing function
for the network input as follows:

net.inputs{1}.processParams{i}

You can access or change the parameters of the ith output processing function
for the network output associated with the second layer, as follows:

net.outputs{2}.processParams{i}

For multilayer network creation functions, such as feedforwardnet, the
default input processing functions are removeconstantrows and mapminmax.
For outputs, the default processing functions are also removeconstantrows
and mapminmax.

The following table lists the most common preprocessing and postprocessing
functions. In most cases, you will not need to use them directly, since the
preprocessing steps become part of the network object. When you simulate
or train the network, the preprocessing and postprocessing will be done
automatically.

Function Algorithm

mapminmax Normalize inputs/targets to fall in the
range [−1, 1]

mapstd Normalize inputs/targets to have zero
mean and unity variance

processpca Extract principal components from the
input vector

fixunknowns Process unknown inputs

removeconstantrows Remove inputs/targets that are constant
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Representing Unknown or Don’t Care Targets
Unknown or “don’t care” targets can be represented with NaN values. We
do not want unknown target values to have an impact on training, but if
a network has several outputs, some elements of any target vector may be
known while others are unknown. One solution would be to remove the
partially unknown target vector and its associated input vector from the
training set, but that involves the loss of the good target values. A better
solution is to represent those unknown targets with NaN values. All the
performance functions of the toolbox will ignore those targets for purposes of
calculating performance and derivatives of performance.

Dividing the Data
When training multilayer networks, the general practice is to first divide
the data into three subsets. The first subset is the training set, which is
used for computing the gradient and updating the network weights and
biases. The second subset is the validation set. The error on the validation
set is monitored during the training process. The validation error normally
decreases during the initial phase of training, as does the training set error.
However, when the network begins to overfit the data, the error on the
validation set typically begins to rise. The network weights and biases are
saved at the minimum of the validation set error. This technique is discussed
in more detail in “Improving Generalization” on page 8-34.

The test set error is not used during training, but it is used to compare
different models. It is also useful to plot the test set error during the training
process. If the error on the test set reaches a minimum at a significantly
different iteration number than the validation set error, this might indicate a
poor division of the data set.

There are four functions provided for dividing data into training, validation
and test sets. They are dividerand (the default), divideblock, divideint,
and divideind. The data division is normally performed automatically when
you train the network.

Function Algorithm

dividerand Divide the data randomly (default)

divideblock Divide the data into contiguous blocks
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Function Algorithm

divideint Divide the data using an interleaved
selection

divideind Divide the data by index

You can access or change the division function for your network with this
property:

net.divideFcn

Each of the division functions takes parameters that customize its behavior.
These values are stored and can be changed with the following network
property:

net.divideParam

The divide function is accessed automatically whenever the network is
trained, and is used to divide the data into training, validation and testing
subsets. If net.divideFcn is set to 'dividerand' (the default), then
the data is randomly divided into the three subsets using the division
parameters net.divideParam.trainRatio, net.divideParam.valRatio,
and net.divideParam.testRatio. The fraction of data that is placed in
the training set is trainRatio/(trainRatio+valRatio+testRatio), with a
similar formula for the other two sets. The default ratios for training, testing
and validation are 0.7, 0.15 and 0.15, respectively.

If net.divideFcn is set to 'divideblock', then the data is divided into three
subsets using three contiguous blocks of the original data set (training taking
the first block, validation the second and testing the third). The fraction of
the original data that goes into each subset is determined by the same three
division parameters used for dividerand.

If net.divideFcn is set to 'divideint', then the data is divided by an
interleaved method, as in dealing a deck of cards. It is done so that different
percentages of data go into the three subsets. The fraction of the original
data that goes into each subset is determined by the same three division
parameters used for dividerand.
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When net.divideFcn is set to 'divideind', the data is divided by
index. The indices for the three subsets are defined by the division
parameters net.divideParam.trainInd, net.divideParam.valInd and
net.divideParam.testInd. The default assignment for these indices is the
null array, so you must set the indices when using this option.
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Create, Configure, and Initialize the Network
After the data has be collected, the next step in training a network is to
create the network object. The function feedforwardnet creates a multilayer
feedforward network. If this function is invoked with no input arguments,
then a default network object is created that has not been configured. The
resulting network can then be configured with the configure command.

As an example, the file housing.mat contains a predefined set of input and
target vectors. The input vectors define data regarding real-estate properties
and the target values define relative values of the properties. Load the data
using the following command:

load house_dataset

Loading this file creates two variables. The input matrix houseInputs
consists of 506 column vectors of 13 real estate variables for 506 different
houses. The target matrix houseTargets consists of the corresponding 506
relative valuations.

The next step is to create the network. The following call to feedforwardnet
creates a two-layer network with 10 neurons in the hidden layer. (During the
configuration step, the number of neurons in the output layer is set to one,
which is the number of elements in each vector of targets.)

net = feedforwardnet;
net = configure(net,houseInputs,houseTargets);

Optional arguments can be provided to feedforwardnet. For instance, the
first argument is an array containing the number of neurons in each hidden
layer. (The default setting is 10, which means one hidden layer with 10
neurons. One hidden layer generally produces excellent results, but you
may want to try two hidden layers, if the results with one are not adequate.
Increasing the number of neurons in the hidden layer increases the power of
the network, but requires more computation and is more likely to produce
overfitting.) The second argument contains the name of the training function
to be used. If no arguments are supplied, the default number of layers is
2, the default number of neurons in the hidden layer is 10, and the default
training function is trainlm. The default transfer function for hidden layers
is tansig and the default for the output layer is purelin.
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The configure command configures the network object and also initializes
the weights and biases of the network; therefore the network is ready for
training. There are times when you might want to reinitialize the weights,
or to perform a custom initialization. “Initializing Weights (init)” on page
2-15 explains the details of the initialization process. You can also skip
the configuration step and go directly to training the network. The train
command will automatically configure the network and initialize the weights.

Other Related Architectures
While two-layer feedforward networks can potentially learn virtually any
input-output relationship, feedforward networks with more layers might
learn complex relationships more quickly. For most problems, it is best to
start with two layers, and then increase to three layers, if the performance
with two layers is not satisfactory.

The function cascadeforwardnet creates cascade-forward networks. These
are similar to feedforward networks, but include a weight connection from the
input to each layer, and from each layer to the successive layers. For example,
a three-layer network has connections from layer 1 to layer 2, layer 2 to layer
3, and layer 1 to layer 3. The three-layer network also has connections from
the input to all three layers. The additional connections might improve the
speed at which the network learns the desired relationship.

The function patternnet creates a network that is very similar to
feedforwardnet, except that it uses the tansig transfer function in the last
layer. This network is generally used for pattern recognition. Other networks
can learn dynamic or time-series relationships.

Initializing Weights (init)
Before training a feedforward network, you must initialize the weights and
biases. The configure command automatically initializes the weights, but
you might want to reinitialize them. You do this with the init command.
This function takes a network object as input and returns a network object
with all weights and biases initialized. Here is how a network is initialized
(or reinitialized):

net = init(net);
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Train the Network
Once the network weights and biases are initialized, the network is ready for
training. The multilayer feedforward network can be trained for function
approximation (nonlinear regression) or pattern recognition. The training
process requires a set of examples of proper network behavior—network
inputs p and target outputs t.

The process of training a neural network involves tuning the values of the
weights and biases of the network to optimize network performance, as
defined by the network performance function net.performFcn. The default
performance function for feedforward networks is mean square error mse—the
average squared error between the network outputs a and the target outputs
t. It is defined as follows:
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(Individual squared errors can also be weighted. See “Error Weighting”
on page 3-40.) There are two different ways in which training can be
implemented: incremental mode and batch mode. In incremental mode, the
gradient is computed and the weights are updated after each input is applied
to the network. In batch mode, all the inputs in the training set are applied
to the network before the weights are updated. This topic describes batch
mode training with the train command. Incremental training with the adapt
command is discussed in “Incremental Training with adapt” on page 1-30. For
most problems, when using the Neural Network Toolbox software, batch
training is significantly faster and produces smaller errors than incremental
training.

For training multilayer feedforward networks, any standard numerical
optimization algorithm can be used to optimize the performance function, but
there are a few key ones that have shown excellent performance for neural
network training. These optimization methods use either the gradient of the
network performance with respect to the network weights, or the Jacobian
of the network errors with respect to the weights.

The gradient and the Jacobian are calculated using a technique called
the backpropagation algorithm, which involves performing computations
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backward through the network. The backpropagation computation is derived
using the chain rule of calculus and is described in Chapters 11 (for the
gradient) and 12 (for the Jacobian) of [HDB96].

Training Algorithms
As an illustration of how the training works, consider the simplest
optimization algorithm — gradient descent. It updates the network weights
and biases in the direction in which the performance function decreases most
rapidly, the negative of the gradient. One iteration of this algorithm can
be written as

x x gk k k k+ = −1 

where xk is a vector of current weights and biases, gk is the current gradient,
and αk is the learning rate. This equation is iterated until the network
converges.

A list of the training algorithms that are available in the Neural Network
Toolbox software and that use gradient- or Jacobian-based methods, is shown
in the following table.

For a detailed description of several of these techniques, see also Hagan,
M.T., H.B. Demuth, and M.H. Beale, Neural Network Design, Boston, MA:
PWS Publishing, 1996, Chapters 11 and 12.

Function Algorithm

trainlm Levenberg-Marquardt

trainbr Bayesian Regularization

trainbfg BFGS Quasi-Newton

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale
Restarts

traincgf Fletcher-Powell Conjugate Gradient

traincgp Polak-Ribiére Conjugate Gradient
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Function Algorithm

trainoss One Step Secant

traingdx Variable Learning Rate Gradient Descent

traingdm Gradient Descent with Momentum

traingd Gradient Descent

The fastest training function is generally trainlm, and it is the default
training function for feedforwardnet. The quasi-Newton method, trainbfg,
is also quite fast. Both of these methods tend to be less efficient for large
networks (with thousands of weights), since they require more memory and
more computation time for these cases. Also, trainlm performs better on
function fitting (nonlinear regression) problems than on pattern recognition
problems.

When training large networks, and when training pattern recognition
networks, trainscg and trainrp are good choices. Their memory
requirements are relatively small, and yet they are much faster than standard
gradient descent algorithms.

See “Multilayer Training Speed and Memory” on page 8-17 for a full
comparison of the performances of the training algorithms shown in the
table above.

As a note on terminology, the term “backpropagation” is sometimes used to
refer specifically to the gradient descent algorithm, when applied to neural
network training. That terminology is not used here, since the process of
computing the gradient and Jacobian by performing calculations backward
through the network is applied in all of the training functions listed above. It
is clearer to use the name of the specific optimization algorithm that is being
used, rather than to use the term backpropagation alone.

Also, the multilayer network is sometimes referred to as a backpropagation
network. However, the backpropagation technique that is used to compute
gradients and Jacobians in a multilayer network can also be applied to many
different network architectures. In fact, the gradients and Jacobians for any
network that has differentiable transfer functions, weight functions and net
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input functions can be computed using the Neural Network Toolbox software
through a backpropagation process. You can even create your own custom
networks and then train them using any of the training functions in the table
above. The gradients and Jacobians will be automatically computed for you.

Efficiency and Memory Reduction
There are some network parameters that are helpful when training large
networks or using large data sets. For example, the parameter

net.efficiency.memoryReduction

can be used to reduce the amount of memory that you use while training
or simulating the network. If this parameter is set to 1 (the default), the
maximum memory is used, and the fastest training times will be achieved.
If this parameter is set to 2, then the data is divided into two parts. All
calculations (like gradients and Jacobians) are done first on part one, and
then later on part two. Any intermediate variables used in part 1 are released
before the part 2 calculations are done. This can save significant memory,
especially for the trainlm training function. If memoryReduction is set to N,
then the data is divided into N parts, which are computed separately. The
larger the value of N, the larger the reduction in memory use, although the
amount of reduction diminishes as N is increased.

There is a drawback to using memory reduction. A computational overhead is
associated with computing the Jacobian and gradient in submatrices. If you
have enough memory available, then it is better to leave memoryReduction
set to 1 and to compute the full Jacobian or gradient in one step. If you have a
large training set, and you are running out of memory, then you should set
memoryReduction to 2 and try again. If you still run out of memory, continue
to increase memoryReduction.

Generalization
Properly trained multilayer networks tend to give reasonable answers when
presented with inputs that they have never seen. Typically, a new input leads
to an accurate ouput, if the new input is similar to inputs used in the training
set. This generalization property makes it possible to train a network on a
representative set of input/target pairs and get good results without training
the network on all possible input/output pairs. There are two features of
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the Neural Network Toolbox software that are designed to improve network
generalization: regularization and early stopping. These features and their
use are discussed in detail in “Improving Generalization” on page 8-34. A few
comments on using these techniques are given in the following.

The default generalization feature for the multilayer feedforward network is
early stopping. Data are automatically divided into training, validation and
test sets, as described in “Dividing the Data” on page 2-11. The error on the
validation set is monitored during training, and the training is stopped when
the validation increases over net.trainParam.max_fail iterations. If you
wish to disable early stopping, you can assign no data to the validation set.
This can be done by setting net.divideParam.valRatio to zero.

An alternative method for improving generalization is regularization.
Regularization can be done automatically by using the Bayesian
regularization training function trainbr. This can be done by setting
net.trainFcn to 'trainbr'. This will also automatically move any data in
the validation set to the training set.

Training Example
To illustrate the training process, execute the following commands:

load house_dataset
net = feedforwardnet(20);
[net,tr] = train(net,houseInputs,houseTargets);

Notice that you did not need to issue the configure command, because the
configuration is done automatically by the train function. The training
window will appear during training, as shown in the following figure. (If
you do not want to have this window displayed during training, you can set
the parameter net.trainParam.showWindow to false. If you want training
information displayed in the command line, you can set the parameter
net.trainParam.showCommandLine to true.)

This window shows that the data has been divided using the dividerand
function, and the Levenberg-Marquardt (trainlm) training method has been
used with the mean square error performance function. Recall that these are
the default settings for feedforwardnet.
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During training, the progress is constantly updated in the training window.
Of most interest are the performance, the magnitude of the gradient of
performance and the number of validation checks. The magnitude of the
gradient and the number of validation checks are used to terminate the
training. The gradient will become very small as the training reaches a
minimum of the performance. If the magnitude of the gradient is less
than 1e-5, the training will stop. This limit can be adjusted by setting
the parameter net.trainParam.min_grad. The number of validation
checks represents the number of successive iterations that the validation
performance fails to decrease. If this number reaches 6 (the default value),
the training will stop. In this run, you can see that the training did stop
because of the number of validation checks. You can change this criterion by
setting the parameter net.trainParam.max_fail. (Note that your results
may be different than those shown in the following figure, because of the
random setting of the initial weights and biases.)
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There are other criteria that can be used to stop network training. They are
listed in the following table.

Parameter Stopping Criteria

min_grad Minimum Gradient Magnitude

max_fail Maximum Number of Validation Increases

time Maximum Training Time
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Parameter Stopping Criteria

goal Minimum Performance Value

epochs Maximum Number of Training Epochs
(Iterations)

The training will also stop if you click the Stop Training button in the
training window. You may want to do this if the performance function fails to
decrease significantly over many iterations. It is always possible to continue
the training by reissuing the train command shown above. It will continue to
train the network from the completion of the previous run.

From the training window, you can access four plots: performance, training
state, error histogram and regression. The performance plot shows the value
of the performance function versus the iteration number. It plots training,
validation and test performances. The training state plot shows the progress
of other training variables, such as the gradient magnitude, the number of
validation checks, etc. The error histogram plot shows the distribution of the
network errors. The regression plot shows a regression between network
outputs and network targets. You can use the histogram and regression plots
to validate network performance, as is discussed in “Post-Training Analysis
(Network Validation)” on page 2-24.
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Post-Training Analysis (Network Validation)
When the training is complete, you will want to check the network
performance and determine if any changes need to be made to the training
process, the network architecture or the data sets. The first thing to do is to
check the training record, tr, which was the second argument returned from
the training function.

tr =

trainFcn: 'trainlm'
trainParam: [1x1 struct]
performFcn: 'mse'

performParam: [1x1 struct]
derivFcn: 'defaultderiv'

divideFcn: 'dividerand'
divideMode: 'sample'

divideParam: [1x1 struct]
trainInd: [1x354 double]

valInd: [1x76 double]
testInd: [1x76 double]

stop: 'Validation stop.'
num_epochs: 30
trainMask: {[1x506 double]}

valMask: {[1x506 double]}
testMask: {[1x506 double]}

best_epoch: 24
goal: 0

states: {1x8 cell}
epoch: [1x31 double]
time: [1x31 double]
perf: [1x31 double]

vperf: [1x31 double]
tperf: [1x31 double]

mu: [1x31 double]
gradient: [1x31 double]
val_fail: [1x31 double]

This structure contains all of the information concerning the training of the
network. For example, tr.trainInd, tr.valInd and tr.testInd contain
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the indices of the data points that were used in the training, validation
and test sets, respectively. If you want to retrain the network using
the same division of data, you can set net.divideFcn to 'divideInd',
net.divideParam.trainInd to tr.trainInd, net.divideParam.valInd to
tr.valInd, net.divideParam.testInd to tr.testInd.

The tr structure also keeps track of several variables during the course of
training, such as the value of the performance function, the magnitude of
the gradient, etc. You can use the training record to plot the performance
progress by using the plotperf command, as in

plotperf(tr)

This produces the following figure. As indicated by tr.best_epoch, the
iteration at which the validation performance reached a minimum was 24.
The training continued for 6 more iterations before the training stopped.
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This figure doesn’t indicate any major problems with the training. The
validation and test curves are very similar. If the test curve had increased
significantly before the validation curve increased, then it is possible that
some overfitting might have occurred.

The next step in validating the network is to create a regression plot, which
shows the relationship between the outputs of the network and the targets.
If the training were perfect, the network outputs and the targets would
be exactly equal, but the relationship is rarely perfect in practice. For
the housing example, we can create a regression plot with the following
commands. The first command calculates the trained network response to all
of the inputs in the data set. The following six commands extract the outputs
and targets that belong to the training, validation and test subsets. The final
command creates three regression plots for training, testing and validation.

houseOutputs = net(houseInputs);
trOut = houseOutputs(tr.trainInd);
vOut = houseOutputs(tr.valInd);
tsOut = houseOutputs(tr.testInd);
trTarg = houseTargets(tr.trainInd);
vTarg = houseTargets(tr.valInd);
tsTarg = houseTargets(tr.testInd);
plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',...
tsTarg,tsOut,'Testing')

The result is shown in the following figure. The three axes represent the
training, validation and testing data. The dashed line in each axis represents
the perfect result – outputs = targets. The solid line represents the best
fit linear regression line between outputs and targets. The R value is an
indication of the relationship between the outputs and targets. If R = 1, this
indicates that there is an exact linear relationship between outputs and
targets. If R is close to zero, then there is no linear relationship between
outputs and targets.

For this example, the training data indicates a good fit. The validation and
test results also show R values that greater than 0.9. The scatter plot is
helpful in showing that certain data points have poor fits. For example, there
is a data point in the test set whose network output is close to 35, while the
corresponding target value is about 12. The next step would be to investigate
this data point to determine if it represents extrapolation (i.e., is it outside of
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the training data set). If so, then it should be included in the training set, and
additional data should be collected to be used in the test set.

Improving Results
If the network is not sufficiently accurate, you can try initializing the network
and the training again. Each time your initialize a feedforward network, the
network parameters are different and might produce different solutions.
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net = init(net);
net = train(net,houseInputs,houseTargets);

As a second approach, you can increase the number of hidden neurons above
20. Larger numbers of neurons in the hidden layer give the network more
flexibility because the network has more parameters it can optimize. (Increase
the layer size gradually. If you make the hidden layer too large, you might
cause the problem to be under-characterized and the network must optimize
more parameters than there are data vectors to constrain these parameters.)

A third option is to try a different training function. Bayesian regularization
training with trainbr, for example, can sometimes produce better
generalization capability than using early stopping.

Finally, try using additional training data. Providing additional data for the
network is more likely to produce a network that generalizes well to new data.
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Use the Network
After the network is trained and validated, the network object can be used to
calculate the network response to any input. For example, if you want to find
the network response to the fifth input vector in the building data set, you
can use the following

a = net(houseInputs(:,5))
a =

34.3922

If you try this command, your output might be different, depending on the
state of your random number generator when the network was initialized.
Below, the network object is called to calculate the outputs for a concurrent
set of all the input vectors in the housing data set. This is the batch mode
form of simulation, in which all the input vectors are placed in one matrix.
This is much more efficient than presenting the vectors one at a time.

a = net(houseInputs);
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Automatic Code Generation
It is often easiest to learn how to use the Neural Network Toolbox software by
starting with some example code and modifying it to suit your problem. It is
very simple to create example code by using the GUIs described in “Getting
Started with Neural Network Toolbox”. In particular, to generate some
sample code to reproduce the function fitting examples shown in this topic,
you can run the neural fitting GUI, nftool. Select the house pricing data from
the GUI, and after you have trained the network, click the Advanced Script
button on the final pane of the GUI. This will automatically generate code
that will show most of the options that are available to you when following
the general network design process for function fitting problems. You can
customize the generated script to fit your needs.

If you are interested in using a multilayer neural network for pattern
recognition, use the pattern recognition GUI, nprtool. It will lead you
through a similar set of design steps for pattern recognition problems, and
can then generate example code showing the options that are available for
pattern recognition networks.
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Limitations and Cautions
You would normally use Levenberg-Marquardt training for small and medium
size networks, if you have enough memory available. If memory is a problem,
then there are a variety of other fast algorithms available. For large networks
you will probably want to use trainscg or trainrp.

Multilayer networks are capable of performing just about any linear or
nonlinear computation, and they can approximate any reasonable function
arbitrarily well. However, while the network being trained might theoretically
be capable of performing correctly, backpropagation and its variations might
not always find a solution. See page 12-8 of [HDB96] for a discussion of
convergence to local minimum points.

The error surface of a nonlinear network is more complex than the error
surface of a linear network. To understand this complexity, see the figures
on pages 12-5 to 12-7 of [HDB96], which show three different error surfaces
for a multilayer network. The problem is that nonlinear transfer functions in
multilayer networks introduce many local minima in the error surface. As
gradient descent is performed on the error surface, depending on the initial
starting conditions, it is possible for the network solution to become trapped
in one of these local minima. Settling in a local minimum can be good or bad
depending on how close the local minimum is to the global minimum and how
low an error is required. In any case, be cautioned that although a multilayer
backpropagation network with enough neurons can implement just about any
function, backpropagation does not always find the correct weights for the
optimum solution. You might want to reinitialize the network and retrain
several times to guarantee that you have the best solution.

Networks are also sensitive to the number of neurons in their hidden layers.
Too few neurons can lead to underfitting. Too many neurons can contribute to
overfitting, in which all training points are well fitted, but the fitting curve
oscillates wildly between these points. Ways of dealing with various of these
issues are discussed in “Improving Generalization” on page 8-34. This topic is
also discussed starting on page 11-21 of [HDB96].
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3 Dynamic Networks

Introduction
Neural networks can be classified into dynamic and static categories. Static
(feedforward) networks have no feedback elements and contain no delays; the
output is calculated directly from the input through feedforward connections.
In dynamic networks, the output depends not only on the current input to the
network, but also on the current or previous inputs, outputs, or states of
the network.

The training of dynamic networks is very similar to the training of
static feedforward networks, as discussed in “Multilayer Networks and
Backpropagation Training” on page 2-2. As described in that topic, the work
flow for the general neural network design process has seven primary steps.
(Data collection in step 1, while important, generally occurs outside the
MATLAB environment.)

1 Collect data

2 Create the network

3 Configure the network

4 Initialize the weights and biases

5 Train the network

6 Validate the network (post-training analysis)

7 Use the network

These design steps, and all of the training methods discussed in “Multilayer
Networks and Backpropagation Training” on page 2-2, can also be used for
dynamic networks. The main differences in the design process occur because
the inputs to the dynamic networks are time sequences. (See “Simulation with
Sequential Inputs in a Dynamic Network” on page 1-25 and “Batch Training
with Dynamic Networks” on page 1-35 for discussions of simulation and
training of dynamic networks.) This results in some additional initialization
procedures prior to training or simulating a dynamic network. There are also
special validation procedures that can be used for dynamic networks. (These
were discussed in “Time Series Prediction”.)
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This topic begins by explaining how dynamic networks operate and by giving
examples of applications for dynamic networks. Then it introduces the
general framework for representing dynamic networks in the toolbox. This
allows you to design your own specialized dynamic networks, which can then
be trained using existing toolbox training functions. Next, the topic describes
several standard dynamic network architectures that you can create with a
single command. Each is shown with a practical application. Finally, the
topic provides an example of creating and training a custom network.

Examples of Dynamic Networks
Dynamic networks can be divided into two categories: those that
have only feedforward connections, and those that have feedback, or
recurrent, connections. To understand the differences between static,
feedforward-dynamic, and recurrent-dynamic networks, create some networks
and see how they respond to an input sequence. (First, you might want to
review “Simulation with Sequential Inputs in a Dynamic Network” on page
1-25.)

The following command creates a pulse input sequence and plots it:

p = {0 0 1 1 1 1 0 0 0 0 0 0};
stem(cell2mat(p))

The next figure show the resulting pulse.
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Now create a static network and find the network response to the pulse
sequence. The following commands create a simple linear network with one
layer, one neuron, no bias, and a weight of 2:

net = linearlayer;
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = 2;

To view the network, use the following command:

view(net)
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You can now simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

The result is shown in the following figure. Note that the response of the
static network lasts just as long as the input pulse. The response of the static
network at any time point depends only on the value of the input sequence at
that same time point.

Now create a dynamic network, but one that does not have any feedback
connections (a nonrecurrent network). You can use the same network used in
“Simulation with Concurrent Inputs in a Dynamic Network” on page 1-27,
which was a linear network with a tapped delay line on the input:

net = linearlayer([0 1]);
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
net.IW{1,1} = [1 1];

To view the network, use the following command:

view(net)
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You can again simulate the network response to the pulse input and plot it:

a = net(p);
stem(cell2mat(a))

The response of the dynamic network, shown in the following figure, lasts
longer than the input pulse. The dynamic network has memory. Its response
at any given time depends not only on the current input, but on the history of
the input sequence. If the network does not have any feedback connections,
then only a finite amount of history will affect the response. In this figure
you can see that the response to the pulse lasts one time step beyond the
pulse duration. That is because the tapped delay line on the input has a
maximum delay of 1.
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Now consider a simple recurrent-dynamic network, shown in the following
figure.

You can create the network, view it and simulate it with the following
commands. The narxnet command is discussed in “NARX Network (narxnet,
closeloop)” on page 3-23.

net = narxnet(0,1,[],'closed');
net.inputs{1}.size = 1;
net.layers{1}.dimensions = 1;
net.biasConnect = 0;
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net.LW{1} = .5;
net.IW{1} = 1;
view(net)
a = net(p);
stem(cell2mat(a))

The resulting network diagram appears.

The following figure is the plot of the network response.
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Notice that recurrent-dynamic networks typically have a longer response than
feedforward-dynamic networks. For linear networks, feedforward-dynamic
networks are called finite impulse response (FIR), because the response to
an impulse input will become zero after a finite amount of time. Linear
recurrent-dynamic networks are called infinite impulse response (IIR),
because the response to an impulse can decay to zero (for a stable network),
but it will never become exactly equal to zero. An impulse response for a
nonlinear network cannot be defined, but the ideas of finite and infinite
responses do carry over.

Applications of Dynamic Networks
Dynamic networks are generally more powerful than static networks
(although somewhat more difficult to train). Because dynamic networks have
memory, they can be trained to learn sequential or time-varying patterns.
This has applications in such disparate areas as prediction in financial
markets [RoJa96], channel equalization in communication systems [FeTs03],
phase detection in power systems [KaGr96], sorting [JaRa04], fault detection
[ChDa99], speech recognition [Robin94], and even the prediction of protein
structure in genetics [GiPr02]. You can find a discussion of many more
dynamic network applications in [MeJa00].

One principal application of dynamic neural networks is in control systems.
This application is discussed in detail in “Neural Network Control Systems”.
Dynamic networks are also well suited for filtering. You will see the use of
some linear dynamic networks for filtering in and some of those ideas are
extended in this topic, using nonlinear dynamic networks.

Dynamic Network Structures
The Neural Network Toolbox software is designed to train a class of network
called the Layered Digital Dynamic Network (LDDN). Any network that can
be arranged in the form of an LDDN can be trained with the toolbox. Here
is a basic description of the LDDN.

Each layer in the LDDN is made up of the following parts:

• Set of weight matrices that come into that layer (which can connect from
other layers or from external inputs), associated weight function rule used
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to combine the weight matrix with its input (normally standard matrix
multiplication, dotprod), and associated tapped delay line

• Bias vector

• Net input function rule that is used to combine the outputs of the various
weight functions with the bias to produce the net input (normally a
summing junction, netprod)

• Transfer function

The network has inputs that are connected to special weights, called input
weights, and denoted by IWi,j (net.IW{i,j} in the code), where j denotes the
number of the input vector that enters the weight, and i denotes the number of
the layer to which the weight is connected. The weights connecting one layer
to another are called layer weights and are denoted by LWi,j (net.LW{i,j} in
the code), where j denotes the number of the layer coming into the weight and
i denotes the number of the layer at the output of the weight.

The following figure is an example of a three-layer LDDN. The first layer has
three weights associated with it: one input weight, a layer weight from layer
1, and a layer weight from layer 3. The two layer weights have tapped delay
lines associated with them.
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The Neural Network Toolbox software can be used to train any LDDN, so
long as the weight functions, net input functions, and transfer functions
have derivatives. Most well-known dynamic network architectures can be
represented in LDDN form. In the remainder of this topic you will see how
to use some simple commands to create and train several very powerful
dynamic networks. Other LDDN networks not covered in this topic can be
created using the generic network command, as explained in “Define Network
Architectures”.

Dynamic Network Training
Dynamic networks are trained in the Neural Network Toolbox software
using the same gradient-based algorithms that were described in “Multilayer
Networks and Backpropagation Training” on page 2-2. You can select from
any of the training functions that were presented in that topic. Examples are
provided in the following sections.

Although dynamic networks can be trained using the same gradient-based
algorithms that are used for static networks, the performance of the
algorithms on dynamic networks can be quite different, and the gradient must
be computed in a more complex way. Consider again the simple recurrent
network shown in this figure.

The weights have two different effects on the network output. The first is the
direct effect, because a change in the weight causes an immediate change in
the output at the current time step. (This first effect can be computed using
standard backpropagation.) The second is an indirect effect, because some
of the inputs to the layer, such as a(t − 1), are also functions of the weights.
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To account for this indirect effect, you must use dynamic backpropagation
to compute the gradients, which is more computationally intensive. (See
[DeHa01a], [DeHa01b] and [DeHa07].) Expect dynamic backpropagation to
take more time to train, in part for this reason. In addition, the error surfaces
for dynamic networks can be more complex than those for static networks.
Training is more likely to be trapped in local minima. This suggests that you
might need to train the network several times to achieve an optimal result.
See [DHH01] and [HDH09] for some discussion on the training of dynamic
networks.

The remaining sections of this topic show how to create, train, and apply
certain dynamic networks to modeling, detection, and forecasting problems.
Some of the networks require dynamic backpropagation for computing the
gradients and others do not. As a user, you do not need to decide whether or
not dynamic backpropagation is needed. This is determined automatically by
the software, which also decides on the best form of dynamic backpropagation
to use. You just need to create the network and then invoke the standard
train command.
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Focused Time-Delay Neural Network (timedelaynet)
Begin with the most straightforward dynamic network, which consists of a
feedforward network with a tapped delay line at the input. This is called
the focused time-delay neural network (FTDNN). This is part of a general
class of dynamic networks, called focused networks, in which the dynamics
appear only at the input layer of a static multilayer feedforward network. The
following figure illustrates a two-layer FTDNN.

This network is well suited to time-series prediction. The following example
the use of the FTDNN for predicting a classic time series.

The following figure is a plot of normalized intensity data recorded from
a Far-Infrared-Laser in a chaotic state. This is a part of one of several
sets of data used for the Santa Fe Time Series Competition [WeGe94]. In
the competition, the objective was to use the first 1000 points of the time
series to predict the next 100 points. Because our objective is simply to
illustrate how to use the FTDNN for prediction, the network is trained here to
perform one-step-ahead predictions. (You can use the resulting network for
multistep-ahead predictions by feeding the predictions back to the input of
the network and continuing to iterate.)
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The first step is to load the data, normalize it, and convert it to a time
sequence (represented by a cell array):

y = laser_dataset;
y = y(1:600);

Now create the FTDNN network, using the timedelaynet command. This
command is similar to the feedforwardnet command, with the additional
input of the tapped delay line vector (the first input). For this example,
use a tapped delay line with delays from 1 to 8, and use ten neurons in the
hidden layer:

ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';

Arrange the network inputs and targets for training. Because the network
has a tapped delay line with a maximum delay of 8, begin by predicting the
ninth value of the time series. You also need to load the tapped delay line
with the eight initial values of the time series (contained in the variable Pi):

p = y(9:end);
t = y(9:end);
Pi=y(1:8);
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ftdnn_net = train(ftdnn_net,p,t,Pi);

Notice that the input to the network is the same as the target. Because the
network has a minimum delay of one time step, this means that you are
performing a one-step-ahead prediction.

During training, the following training window appears.

Training stopped because the maximum epoch was reached. From this
window, you can display the response of the network by clicking Time-Series
Response. The following figure appears.
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Now simulate the network and determine the prediction error.

yp = ftdnn_net(p,Pi);
e = gsubtract(yp,t);
rmse = sqrt(mse(e))

rmse =
0.9740

(Note that gsubtract is a general subtraction function that can operate on cell
arrays.) This result is much better than you could have obtained using a linear
predictor. You can verify this with the following commands, which design a
linear filter with the same tapped delay line input as the previous FTDNN.

lin_net = linearlayer([1:8]);
lin_net.trainFcn='trainlm';
[lin_net,tr] = train(lin_net,p,t,Pi);
lin_yp = lin_net(p,Pi);
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lin_e = gsubtract(lin_yp,t);
lin_rmse = sqrt(mse(lin_e))

lin_rmse =
21.1386

The rms error is 21.1386 for the linear predictor, but 0.9740 for the nonlinear
FTDNN predictor.

One nice feature of the FTDNN is that it does not require dynamic
backpropagation to compute the network gradient. This is because the tapped
delay line appears only at the input of the network, and contains no feedback
loops or adjustable parameters. For this reason, you will find that this
network trains faster than other dynamic networks.

If you have an application for a dynamic network, try the linear network first
(linearlayer) and then the FTDNN (timedelaynet). If neither network
is satisfactory, try one of the more complex dynamic networks discussed in
the remainder of this topic.
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Preparing Data (preparets)
You will notice in the last section that for dynamic networks there is a
significant amount of data preparation that is required before training or
simulating the network. This is because the tapped delay lines in the network
need to be filled with initial conditions, which requires that part of the
original data set be removed and shifted. (You can see the steps for doing this
.) There is a toolbox function that facilitates the data preparation for dynamic
(time series) networks - preparets. For example, the following lines:

p = y(9:end);
t = y(9:end);
Pi = y(1:8);

can be replaced with

[p,Pi,Ai,t] = preparets(ftdnn_net,y,y);

The preparets function uses the network object to determine how to fill the
tapped delay lines with initial conditions, and how to shift the data to create
the correct inputs and targets to use in training or simulating the network.
The general form for invoking preparets is

[X,Xi,Ai,T,EW,shift] = preparets(net,inputs,targets,feedback,EW)

The input arguments for preparets are the network object (net), the
external (non-feedback) input to the network (inputs), the non-feedback
target (targets), the feedback target (feedback), and the error weights (EW)
(see “Error Weighting” on page 3-40). The difference between external and
feedback signals will become clearer when the NARX network is described in
“NARX Network (narxnet, closeloop)” on page 3-23. For the FTDNN network,
there is no feedback signal.

The return arguments for preparets are the time shift between network
inputs and outputs (shift), the network input for training and simulation (X),
the initial inputs (Xi) for loading the tapped delay lines for input weights, the
initial layer outputs (Ai) for loading the tapped delay lines for layer weights,
the training targets (T), and the error weights (EW).
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Using preparets eliminates the need to manually shift inputs and targets and
load tapped delay lines. This is especially useful for more complex networks.
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Distributed Time-Delay Neural Network (distdelaynet)
The FTDNN had the tapped delay line memory only at the input to the
first layer of the static feedforward network. You can also distribute the
tapped delay lines throughout the network. The distributed TDNN was first
introduced in [WaHa89] for phoneme recognition. The original architecture
was very specialized for that particular problem. The following figure shows a
general two-layer distributed TDNN.

This network can be used for a simplified problem that is similar to phoneme
recognition. The network will attempt to recognize the frequency content
of an input signal. The following figure shows a signal in which one of two
frequencies is present at any given time.
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The following code creates this signal and a target network output. The target
output is 1 when the input is at the low frequency and −1 when the input is
at the high frequency.

time = 0:99;
y1 = sin(2*pi*time/10);
y2 = sin(2*pi*time/5);
y=[y1 y2 y1 y2];
t1 = ones(1,100);
t2 = -ones(1,100);
t = [t1 t2 t1 t2];

Now create the distributed TDNN network with the distdelaynet function.
The only difference between the distdelaynet function and the timedelaynet
function is that the first input argument is a cell array that contains the
tapped delays to be used in each layer. In the next example, delays of zero to
four are used in layer 1 and zero to three are used in layer 2. (To add some
variety, the training function trainbr is used in this example instead of the
default, which is trainlm. You can use any training function discussed in
“Multilayer Networks and Backpropagation Training” on page 2-2.)

d1 = 0:4;
d2 = 0:3;
p = con2seq(y);
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t = con2seq(t);
dtdnn_net = distdelaynet({d1,d2},5);
dtdnn_net.trainFcn = 'trainbr';
dtdnn_net.divideFcn = '';
dtdnn_net.trainParam.epochs = 100;
dtdnn_net = train(dtdnn_net,p,t);
yp = sim(dtdnn_net,p);
plotresponse(t,yp);

The following figure shows the trained network output. The network is able
to accurately distinguish the two “phonemes.”

You will notice that the training is generally slower for the distributed TDNN
network than for the FTDNN. This is because the distributed TDNN must
use dynamic backpropagation.
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NARX Network (narxnet, closeloop)
All the specific dynamic networks discussed so far have either been focused
networks, with the dynamics only at the input layer, or feedforward networks.
The nonlinear autoregressive network with exogenous inputs (NARX) is
a recurrent dynamic network, with feedback connections enclosing several
layers of the network. The NARX model is based on the linear ARX model,
which is commonly used in time-series modeling.

The defining equation for the NARX model is

y t f y t y t y t n u t u t u t ny u( ) ( ( ), ( ), , ( ), ( ), ( ), , ( ))= − − − − − −1 2 1 2 

where the next value of the dependent output signal y(t) is regressed on
previous values of the output signal and previous values of an independent
(exogenous) input signal. You can implement the NARX model by using a
feedforward neural network to approximate the function f. A diagram of the
resulting network is shown below, where a two-layer feedforward network is
used for the approximation. This implementation also allows for a vector ARX
model, where the input and output can be multidimensional.

There are many applications for the NARX network. It can be used as a
predictor, to predict the next value of the input signal. It can also be used for
nonlinear filtering, in which the target output is a noise-free version of the
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input signal. The use of the NARX network is shown in another important
application, the modeling of nonlinear dynamic systems.

Before showing the training of the NARX network, an important configuration
that is useful in training needs explanation. You can consider the output of
the NARX network to be an estimate of the output of some nonlinear dynamic
system that you are trying to model. The output is fed back to the input of the
feedforward neural network as part of the standard NARX architecture, as
shown in the left figure below. Because the true output is available during
the training of the network, you could create a series-parallel architecture
(see [NaPa91]), in which the true output is used instead of feeding back
the estimated output, as shown in the right figure below. This has two
advantages. The first is that the input to the feedforward network is more
accurate. The second is that the resulting network has a purely feedforward
architecture, and static backpropagation can be used for training.

The following shows the use of the series-parallel architecture for training a
NARX network to model a dynamic system.

The example of the NARX network is the magnetic levitation system described
beginning in “Use the NARMA-L2 Controller Block” on page 4-18. The bottom
graph in the following figure shows the voltage applied to the electromagnet,
and the top graph shows the position of the permanent magnet. The data was
collected at a sampling interval of 0.01 seconds to form two time series.

The goal is to develop a NARX model for this magnetic levitation system.
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First, load the training data. Use tapped delay lines with two delays for both
the input and the output, so training begins with the third data point. There
are two inputs to the series-parallel network, the u(t) sequence and the y(t)
sequence, so p is a cell array with two rows:

load magdata
[u,us] = mapminmax(u);
[y,ys] = mapminmax(y);
y = con2seq(y);
u = con2seq(u);

Create the series-parallel NARX network using the function narxnet. Use 10
neurons in the hidden layer and use trainlm for the training function, and
then prepare the data with preparets:

d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);

(Notice that the y sequence is considered a feedback signal, which is an input
that is also an output (target). Later, when you close the loop, the appropriate

3-25



3 Dynamic Networks

output will be connected to the appropriate input.) Now you are ready to
train the network.

narx_net = train(narx_net,p,t,Pi);

You can now simulate the network and plot the resulting errors for the
series-parallel implementation.

yp = sim(narx_net,p,Pi);
e = cell2mat(yp)-cell2mat(t);
plot(e)

The result is displayed in the following plot. You can see that the errors are
very small. However, because of the series-parallel configuration, these are
errors for only a one-step-ahead prediction. A more stringent test would be to
rearrange the network into the original parallel form (closed loop) and then
to perform an iterated prediction over many time steps. Now the parallel
operation is shown.

There is a toolbox function (closeloop) for converting NARX (and other)
networks from the series-parallel configuration (open loop), which is useful
for training, to the parallel configuration (closed loop), which is useful for
multi-step-ahead prediction. The following command illustrates how to
convert the network that you just trained to parallel form:
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narx_net_closed = closeloop(narx_net);

To see the differences between the two networks, you can use the view
command:

view(narx_net)

view(narx_net_closed)

You can now use the closed-loop (parallel) configuration to perform an iterated
prediction of 900 time steps. In this network you need to load the two initial
inputs and the two initial outputs as initial conditions. You can use the
preparets function to prepare the data. It will use the network structure to
determine how to divide and shift the data appropriately.

y1=y(1700:2600);
u1=u(1700:2600);
[p1,Pi1,Ai1,t1] = preparets(narx_net_closed,u1,{},y1);
yp1 = narx_net_closed(p1,Pi1,Ai1);
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plot([cell2mat(yp1)' cell2mat(t1)'])

The following figure illustrates the iterated prediction. The solid line is the
actual position of the magnet, and the dashed line is the position predicted by
the NARX neural network. Even though the network is predicting 900 time
steps ahead, the prediction is very accurate.

In order for the parallel response (iterated prediction) to be accurate, it is
important that the network be trained so that the errors in the series-parallel
configuration (one-step-ahead prediction) are very small.

You can also create a parallel (closed loop) NARX network, using the narxnet
command with the fourth input argument set to 'closed', and train that
network directly. Generally, the training takes longer, and the resulting
performance is not as good as that obtained with series-parallel training.
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Layer-Recurrent Network (layrecnet)
The next dynamic network to be introduced is the Layer-Recurrent Network
(LRN). An earlier simplified version of this network was introduced by Elman
[Elma90]. In the LRN, there is a feedback loop, with a single delay, around
each layer of the network except for the last layer. The original Elman
network had only two layers, and used a tansig transfer function for the
hidden layer and a purelin transfer function for the output layer. The original
Elman network was trained using an approximation to the backpropagation
algorithm. The layrecnet command generalizes the Elman network to have
an arbitrary number of layers and to have arbitrary transfer functions in each
layer. The toolbox trains the LRN using exact versions of the gradient-based
algorithms discussed in “Multilayer Networks and Backpropagation Training”
on page 2-2. The following figure illustrates a two-layer LRN.

The LRN configurations are used in many filtering and modeling applications
discussed already. To show its operation, this example uses the “phoneme”
detection problem discussed in “Distributed Time-Delay Neural Network
(distdelaynet)” on page 3-20. Here is the code to load the data and to create
and train the network:

load phoneme
p = con2seq(y);
t = con2seq(t);
lrn_net = newlrn(p,t,8);
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lrn_net.trainFcn = 'trainbr';
lrn_net.trainParam.show = 5;
lrn_net.trainParam.epochs = 50;
lrn_net = train(lrn_net,p,t);

After training, you can plot the response using the following code:

y = lrn_net(p);
plot(cell2mat(y));

The following plot shows that the network was able to detect the “phonemes.”
The response is very similar to the one obtained using the TDNN.
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Training Custom Networks
So far, this topic has described the training procedures for several specific
dynamic network architectures. However, any network that can be created
in the toolbox can be trained using the training functions described in
“Multilayer Networks and Backpropagation Training” on page 2-2 so long
as the components of the network are differentiable. This section gives
an example of how to create and train a custom architecture. The custom
architecture you will use is the model reference adaptive control (MRAC)
system that is described in detail in “Model Reference Control” on page 4-23.

As you can see in “Model Reference Control” on page 4-23, the model reference
control architecture has two subnetworks. One subnetwork is the model of
the plant that you want to control. The other subnetwork is the controller.
You will begin by training a NARX network that will become the plant model
subnetwork. For this example, you will use the robot arm to represent the
plant, as described in “Model Reference Control” on page 4-23. The following
code will load data collected from the robot arm and create and train a NARX
network. For this simple problem, you do not need to preprocess the data, and
all of the data can be used for training, so no data division is needed.

[u,y] = robotarm_dataset;
d1 = [1:2];
d2 = [1:2];
S1 = 5;
narx_net = narxnet(d1,d2,S1);
narx_net.divideFcn = '';
narx_net.inputs{1}.processFcns = {};
narx_net.inputs{2}.processFcns = {};
narx_net.outputs{2}.processFcns = {};
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u,{},y);
narx_net = train(narx_net,p,t,Pi);
narx_net_closed = closeloop(narx_net);
view(narx_net_closed)

The resulting network is shown in the following figure.
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Now that the NARX plant model is trained, you can create the total MRAC
system and insert the NARX model inside. Begin with a feedforward network,
and then add the feedback connections. Also, turn off learning in the plant
model subnetwork, since it has already been trained. The next stage of
training will train only the controller subnetwork.

mrac_net = feedforwardnet([S1 1 S1]);
mrac_net.layerConnect = [0 1 0 1;1 0 0 0;0 1 0 1;0 0 1 0];
mrac_net.outputs{4}.feedbackMode = 'closed';
mrac_net.layers{2}.transferFcn = 'purelin';
mrac_net.layerWeights{3,4}.delays = 1:2;
mrac_net.layerWeights{3,2}.delays = 1:2;
mrac_net.layerWeights{3,2}.learn = 0;
mrac_net.layerWeights{3,4}.learn = 0;
mrac_net.layerWeights{4,3}.learn = 0;
mrac_net.biases{3}.learn = 0;
mrac_net.biases{4}.learn = 0;

The following code turns off data division and preprocessing, which are not
needed for this example problem. It also sets the delays needed for certain
layers and names the network.

mrac_net.divideFcn = '';
mrac_net.inputs{1}.processFcns = {};
mrac_net.outputs{4}.processFcns = {};
mrac_net.name = 'Model Reference Adaptive Control Network';
mrac_net.layerWeights{1,2}.delays = 1:2;
mrac_net.layerWeights{1,4}.delays = 1:2;
mrac_net.inputWeights{1}.delays = 1:2;
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To configure the network, you need some sample training data. The following
code loads and plots the training data, and configures the network:

[refin,refout] = refmodel_dataset;
ind = 1:length(refin);
plot(ind,cell2mat(refin),ind,cell2mat(refout));
mrac_net = configure(mrac_net,refin,refout);

You want the closed-loop MRAC system to respond in the same way as the
reference model that was used to generate this data. (See “Use the Model
Reference Controller Block” on page 4-24 for a description of the reference
model.)

Now insert the weights from the trained plant model network into the
appropriate location of the MRAC system.

mrac_net.LW{3,2} = narx_net_closed.IW{1};
mrac_net.LW{3,4} = narx_net_closed.LW{1,2};
mrac_net.b{3} = narx_net_closed.b{1};
mrac_net.LW{4,3} = narx_net_closed.LW{2,1};
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mrac_net.b{4} = narx_net_closed.b{2};

You can set the output weights of the controller network to zero, which will
give the plant an initial input of zero.

mrac_net.LW{2,1} = zeros(size(mrac_net.LW{2,1}));
mrac_net.b{2} = 0;

You can also associate any plots and training function that you desire to the
network.

mrac_net.plotFcns = {'plotperform','plottrainstate',...
'ploterrhist','plotregression','plotresponse'};

mrac_net.trainFcn = 'trainlm';

The final MRAC network can be viewed with the following command:

view(mrac_net)

Layer 3 and layer 4 (output) make up the plant model subnetwork. Layer 1
and layer 2 make up the controller.

You can now prepare the training data and train the network.

[x_tot,xi_tot,ai_tot,t_tot] = ...
preparets(mrac_net,refin,{},refout);

mrac_net.trainParam.epochs = 50;
mrac_net.trainParam.min_grad = 1e-10;
[mrac_net,tr] = train(mrac_net,x_tot,t_tot,xi_tot,ai_tot);
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Note Notice that you are using the trainlm training function here, but
any of the training functions discussed in “Multilayer Networks and
Backpropagation Training” on page 2-2 could be used as well. Any network
that you can create in the toolbox can be trained with any of those training
functions. The only limitation is that all of the parts of the network must
be differentiable.

You will find that the training of the MRAC system takes much longer
that the training of the NARX plant model. This is because the network is
recurrent and dynamic backpropagation must be used. This is determined
automatically by the toolbox software and does not require any user
intervention. There are several implementations of dynamic backpropagation
(see [DeHa07]), and the toolbox software automatically determines the most
efficient one for the selected network architecture and training algorithm.

After the network has been trained, you can test the operation by applying a
test input to the MRAC network. The following code creates a skyline input
function, which is a series of steps of random height and width, and applies it
to the trained MRAC network.

testin = skyline(1000,50,200,-.7,.7);
testinseq = con2seq(testin);
testoutseq = mrac_net(testinseq);
testout = cell2mat(testoutseq);
figure;plot([testin' testout'])

From the figure below, you can see that the plant model output does follow
the reference input with the correct critically damped response, even though
the input sequence was not the same as the input sequence in the training
data. The steady state response is not perfect for each step, but this could be
improved with a larger training set and perhaps more hidden neurons.

The purpose of this example was to show that you can create your own custom
dynamic network and train it using the standard toolbox training functions
without any modifications. Any network that you can create in the toolbox can
be trained with the standard training functions, as long as each component of
the network has a defined derivative.
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It should be noted that recurrent networks are generally more difficult to
train than feedforward networks. See [HDH09] for some discussion of these
training difficulties.
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Multiple Sequences, Time-Series Utilities, and Error
Weighting

There are a number of utility functions available in the toolbox for
manipulating time series data sets. This section describes some of these
functions, as well as a technique for weighting errors.

Multiple Sequences
There are times when time-series data is not available in one long sequence,
but rather as several shorter sequences. When dealing with static networks
and concurrent batches of static data, you can simply append data sets
together to form one large concurrent batch. However, you would not
generally want to append time sequences together, since that would cause a
discontinuity in the sequence. For these cases, you can create a concurrent set
of sequences, as described in “Data Structures” on page 1-24.

When training a network with a concurrent set of sequences, it is required
that each sequence be of the same length. If this is not the case, then the
shorter sequence inputs and targets should be padded with NaNs, in order to
make all sequences the same length. The targets that are assigned values of
NaN will be ignored during the calculation of network performance.

The following code illustrates the use of the function catsamples to combine
several sequences together to form a concurrent set of sequences, while at the
same time padding the shorter sequences.

load magmulseq
y_mul = catsamples(y1,y2,y3,'pad');
u_mul = catsamples(u1,u2,u3,'pad');
d1 = [1:2];
d2 = [1:2];
narx_net = narxnet(d1,d2,10);
narx_net.divideFcn = '';
narx_net.trainParam.min_grad = 1e-10;
[p,Pi,Ai,t] = preparets(narx_net,u_mul,{},y_mul);
narx_net = train(narx_net,p,t,Pi);
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Time-Series Utilities
There are other utility functions that are useful when manipulating neural
network data, which can consist of time sequences, concurrent batches or
combinations of both. It can also include multiple signals (as in multiple
input, output or target vectors). The following diagram illustrates the
structure of a general neural network data object. For this example there are
three time steps of a batch of four samples (four sequences) of two signals.
One signal has two elements, and the other signal has three elements.

The following table lists some of the more useful toolbox utility functions for
neural network data. They allow you to do things like add, subtract, multiply,
divide, etc. (Addition and subtraction of cell arrays do not have standard
definitions, but for neural network data these operations are well defined and
are implemented in the following functions.)

Function Operation

gadd Add neural network (nn) data.

gdivide Divide nn data.

getelements Select indicated elements from nn data.

getsamples Select indicated samples from nn data.

getsignals Select indicated signals from nn data.

gettimesteps Select indicated time steps from nn data.

gmultiply Multiply nn data.

gnegate Take the negative of nn data.
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Function Operation

gsubtract Subtract nn data.

nndata Create an nn data object of specified size,
where values are assigned randomly or to
a constant.

nnsize Return number of elements, samples, time
steps and signals in an nn data object.

numelements Return the number of elements in nn data.

numsamples Return the number of samples in nn data.

numsignals Return the number of signals in nn data.

numtimesteps Return the number of time steps in nn
data.

setelements Set specified elements of nn data.

setsamples Set specified samples of nn data.

setsignals Set specified signals of nn data.

settimesteps Set specified time steps of nn data.

There are also some useful plotting and analysis functions for dynamic
networks that are listed in the following table. There are examples of using
these functions in the “Getting Started with Neural Network Toolbox”.

Function Operation

ploterrcorr Plot the autocorrelation function of the
error.

plotinerrcorr Plot the crosscorrelation between the error
and the input.

plotresponse Plot network output and target versus
time.
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Error Weighting
In the default mean square error performance function (see “Train the
Network” on page 2-16), each squared error contributes the same amount to
the performance function as follows:
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However, the toolbox allows you to weight each squared error individually as
follows:
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The error weighting object needs to have the same dimensions as the target
data. In this way, errors can be weighted according to time step, sample
number, signal number or element number. The following is an example of
weighting the errors at the end of a time sequence more heavily than errors at
the beginning of a time sequence. The error weighting object is passed as the
last argument in the call to train.

y = laser_dataset;
y = y(1:600);
ind = 1:600;
ew = 0.99.^(600-ind);
figure;plot(ew)
ew = con2seq(ew);
ftdnn_net = timedelaynet([1:8],10);
ftdnn_net.trainParam.epochs = 1000;
ftdnn_net.divideFcn = '';
[p,Pi,Ai,t,ew1] = preparets(ftdnn_net,y,y,{},ew);
[ftdnn_net1,tr] = train(ftdnn_net,p,t,Pi,Ai,ew1);

The following figure illustrates the error weighting for this example. There
are 600 time steps in the training data, and the errors are weighted
exponentially, with the last squared error having a weight of 1, and the
squared error at the first time step having a weighting of 0.0024.
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The response of the trained network is shown in the following figure. If
you compare this response to the response of the network that was trained
without exponential weighting on the squared errors, as shown , you can see
that the errors late in the sequence are smaller than the errors earlier in the
sequence. The errors that occurred later are smaller because they contributed
more to the weighted performance index than earlier errors.
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Introduction to System Control
Neural networks have been applied successfully in the identification and
control of dynamic systems. The universal approximation capabilities of the
multilayer perceptron make it a popular choice for modeling nonlinear systems
and for implementing general-purpose nonlinear controllers [HaDe99]. This
chapter introduces three popular neural network architectures for prediction
and control that have been implemented in the Neural Network Toolbox
software:

• Model Predictive Control

• NARMA-L2 (or Feedback Linearization) Control

• Model Reference Control

This chapter presents brief descriptions of each of these architectures and
shows how you can use them.

There are typically two steps involved when using neural networks for control:

1 System identification

2 Control design

In the system identification stage, you develop a neural network model of
the plant that you want to control. In the control design stage, you use the
neural network plant model to design (or train) the controller. In each of the
three control architectures described in this chapter, the system identification
stage is identical. The control design stage, however, is different for each
architecture:

• For model predictive control, the plant model is used to predict future
behavior of the plant, and an optimization algorithm is used to select the
control input that optimizes future performance.

• For NARMA-L2 control, the controller is simply a rearrangement of the
plant model.

• For model reference control, the controller is a neural network that is
trained to control a plant so that it follows a reference model. The neural
network plant model is used to assist in the controller training.
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The next three sections of this chapter discuss model predictive control,
NARMA-L2 control, and model reference control. Each section consists of a
brief description of the control concept, followed by an example of the use of
the appropriate Neural Network Toolbox function. These three controllers
are implemented as Simulink® blocks, which are contained in the Neural
Network Toolbox blockset.

To assist you in determining the best controller for your application, the
following list summarizes the key controller features. Each controller has its
own strengths and weaknesses. No single controller is appropriate for every
application.

• Model Predictive Control — This controller uses a neural network
model to predict future plant responses to potential control signals. An
optimization algorithm then computes the control signals that optimize
future plant performance. The neural network plant model is trained
offline, in batch form. (This is true for all three control architectures.) The
controller, however, requires a significant amount of online computation,
because an optimization algorithm is performed at each sample time to
compute the optimal control input.

• NARMA-L2 Control— This controller requires the least computation of
these three architectures. The controller is simply a rearrangement of the
neural network plant model, which is trained offline, in batch form. The
only online computation is a forward pass through the neural network
controller. The drawback of this method is that the plant must either be
in companion form, or be capable of approximation by a companion form
model. (“Identification of the NARMA-L2 Model” on page 4-14 describes
the companion form model.)

• Model Reference Control— The online computation of this controller,
like NARMA-L2, is minimal. However, unlike NARMA-L2, the model
reference architecture requires that a separate neural network controller
be trained offline, in addition to the neural network plant model. The
controller training is computationally expensive, because it requires the
use of dynamic backpropagation [HaJe99]. On the positive side, model
reference control applies to a larger class of plant than does NARMA-L2
control.

4-3



4 Control Systems

NN Predictive Control
The neural network predictive controller that is implemented in the Neural
Network Toolbox software uses a neural network model of a nonlinear plant
to predict future plant performance. The controller then calculates the control
input that will optimize plant performance over a specified future time
horizon. The first step in model predictive control is to determine the neural
network plant model (system identification). Next, the plant model is used
by the controller to predict future performance. (See the Model Predictive
Control Toolbox™ documentation for complete coverage of the application of
various model predictive control strategies to linear systems.)

The following section describes the system identification process. This is
followed by a description of the optimization process. Finally, it discusses
how to use the model predictive controller block that is implemented in the
Simulink environment.

System Identification
The first stage of model predictive control is to train a neural network to
represent the forward dynamics of the plant. The prediction error between
the plant output and the neural network output is used as the neural network
training signal. The process is represented by the following figure:
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The neural network plant model uses previous inputs and previous plant
outputs to predict future values of the plant output. The structure of the
neural network plant model is given in the following figure.

This network can be trained offline in batch mode, using data collected
from the operation of the plant. You can use any of the training algorithms
discussed in “Multilayer Networks and Backpropagation Training” on page
2-2 for network training. This process is discussed in more detail later in
this chapter.

Predictive Control
The model predictive control method is based on the receding horizon
technique [SoHa96]. The neural network model predicts the plant response
over a specified time horizon. The predictions are used by a numerical
optimization program to determine the control signal that minimizes the
following performance criterion over the specified horizon
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where N1, N2, and Nu define the horizons over which the tracking error and
the control increments are evaluated. The u′ variable is the tentative control
signal, yr is the desired response, and ym is the network model response. The ρ
value determines the contribution that the sum of the squares of the control
increments has on the performance index.
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The following block diagram illustrates the model predictive control process.
The controller consists of the neural network plant model and the optimization
block. The optimization block determines the values of u′ that minimize J, and
then the optimal u is input to the plant. The controller block is implemented
in Simulink, as described in the following section.

Use the NN Predictive Controller Block
This section shows how the NN Predictive Controller block is used. The first
step is to copy the NN Predictive Controller block from the Neural Network
Toolbox block library to the Simulink Editor. See the Simulink documentation
if you are not sure how to do this. This step is skipped in the following
example.

An example model is provided with the Neural Network Toolbox software
to show the use of the predictive controller. This example uses a catalytic
Continuous Stirred Tank Reactor (CSTR). A diagram of the process is shown
in the following figure.
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The dynamic model of the system is
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where h(t) is the liquid level, Cb(t) is the product concentration at the output of
the process, w1(t) is the flow rate of the concentrated feed Cb1, and w2(t) is the
flow rate of the diluted feed Cb2. The input concentrations are set to Cb1 = 24.9
and Cb2 = 0.1. The constants associated with the rate of consumption are
k1 = 1 and k2 = 1.

The objective of the controller is to maintain the product concentration by
adjusting the flow w1(t). To simplify the example, set w2(t) = 0.1. The level of
the tank h(t) is not controlled for this experiment.

To run this example:

1 Start MATLAB.

2 Type predcstr in the MATLAB Command Window. This command opens
the Simulink Editor with the following model.
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The Plant block contains the Simulink CSTR plant model. The NN
Predictive Controller block signals are connected as follows:

• Control Signal is connected to the input of the Plant model.

• The Plant Output signal is connected to the Plant block output.

• The Reference is connected to the Random Reference signal.

3 Double-click the NN Predictive Controller block. This opens the following
window for designing the model predictive controller. This window enables
you to change the controller horizons N2 and Nu. (N1 is fixed at 1.) The
weighting parameter ρ, described earlier, is also defined in this window.
The parameter α is used to control the optimization. It determines how
much reduction in performance is required for a successful optimization
step. You can select which linear minimization routine is used by the
optimization algorithm, and you can decide how many iterations of the
optimization algorithm are performed at each sample time. The linear
minimization routines are slight modifications of those discussed in
“Multilayer Networks and Backpropagation Training” on page 2-2.
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4 Select Plant Identification. This opens the following window. You must
develop the neural network plant model before you can use the controller.
The plant model predicts future plant outputs. The optimization algorithm
uses these predictions to determine the control inputs that optimize future
performance. The plant model neural network has one hidden layer, as
shown earlier. You select the size of that layer, the number of delayed
inputs and delayed outputs, and the training function in this window. You
can select any of the training functions described in “Multilayer Networks
and Backpropagation Training” on page 2-2 to train the neural network
plant model.

4-9



4 Control Systems

5 Select the Generate Training Data button. The program generates
training data by applying a series of random step inputs to the Simulink
plant model. The potential training data is then displayed in a figure
similar to the following.
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6 Select Accept Data, and then select Train Network from the Plant
Identification window. Plant model training begins. The training proceeds
according to the training algorithm (trainlm in this case) you selected.
This is a straightforward application of batch training, as described in
“Multilayer Networks and Backpropagation Training” on page 2-2. After
the training is complete, the response of the resulting plant model is
displayed, as in the following figure. (There are also separate plots for
validation and testing data, if they exist.)
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You can then continue training with the same data set by selecting Train
Network again, you can Erase Generated Data and generate a new data
set, or you can accept the current plant model and begin simulating the
closed loop system. For this example, begin the simulation, as shown in
the following steps.

7 Select OK in the Plant Identification window. This loads the trained neural
network plant model into the NN Predictive Controller block.

8 Select OK in the Neural Network Predictive Control window. This loads
the controller parameters into the NN Predictive Controller block.

9 Return to the Simulink Editor and start the simulation by choosing the
menu option Simulation > Run. As the simulation runs, the plant output
and the reference signal are displayed, as in the following figure.
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NARMA-L2 (Feedback Linearization) Control
The neurocontroller described in this section is referred to by two different
names: feedback linearization control and NARMA-L2 control. It is referred
to as feedback linearization when the plant model has a particular form
(companion form). It is referred to as NARMA-L2 control when the plant
model can be approximated by the same form. The central idea of this type of
control is to transform nonlinear system dynamics into linear dynamics by
canceling the nonlinearities. This section begins by presenting the companion
form system model and showing how you can use a neural network to identify
this model. Then it describes how the identified neural network model can
be used to develop a controller. This is followed by an example of how to use
the NARMA-L2 Control block, which is contained in the Neural Network
Toolbox blockset.

Identification of the NARMA-L2 Model
As with model predictive control, the first step in using feedback linearization
(or NARMA-L2) control is to identify the system to be controlled. You train
a neural network to represent the forward dynamics of the system. The
first step is to choose a model structure to use. One standard model that is
used to represent general discrete-time nonlinear systems is the nonlinear
autoregressive-moving average (NARMA) model:

y k d N y k y k y k n u k u k u k n( ) [ ( ), ( ), , ( ), ( ), ( ), , ( )]+ = − − + − − +1 1 1 1 

where u(k) is the system input, and y(k) is the system output. For the
identification phase, you could train a neural network to approximate the
nonlinear function N. This is the identification procedure used for the NN
Predictive Controller.

If you want the system output to follow some reference trajectory
y(k + d) = yr(k + d), the next step is to develop a nonlinear controller of the
form:

u k G y k y k y k n y k d u k u k mr( ) [ ( ), ( ), , ( ), ( ), ( ), , ( )]= − − + + − − +1 1 1 1 

The problem with using this controller is that if you want to train a neural
network to create the function G to minimize mean square error, you need
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to use dynamic backpropagation ([NaPa91] or [HaJe99]). This can be quite
slow. One solution, proposed by Narendra and Mukhopadhyay [NaMu97], is
to use approximate models to represent the system. The controller used in
this section is based on the NARMA-L2 approximate model:

ˆ( ) [ ( ), ( ), , ( ), ( ), , ( )]
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This model is in companion form, where the next controller input u(k) is not
contained inside the nonlinearity. The advantage of this form is that you
can solve for the control input that causes the system output to follow the
reference y(k + d) = yr(k + d). The resulting controller would have the form

u k
y k d f y k y k y k n u k u k n

g
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Using this equation directly can cause realization problems, because you
must determine the control input u(k) based on the output at the same time,
y(k). So, instead, use the model
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where d ≥ 2. The following figure shows the structure of a neural network
representation.
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NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

u k
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g y k
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which is realizable for d ≥ 2. The following figure is a block diagram of the
NARMA-L2 controller.
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This controller can be implemented with the previously identified NARMA-L2
plant model, as shown in the following figure.
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Use the NARMA-L2 Controller Block
This section shows how the NARMA-L2 controller is trained. The first step is
to copy the NARMA-L2 Controller block from the Neural Network Toolbox
block library to the Simulink Editor. See the Simulink documentation if you
are not sure how to do this. This step is skipped in the following example.

An example model is provided with the Neural Network Toolbox software to
show the use of the NARMA-L2 controller. In this example, the objective is to
control the position of a magnet suspended above an electromagnet, where the
magnet is constrained so that it can only move in the vertical direction, as in
the following figure.
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The equation of motion for this system is
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where y(t) is the distance of the magnet above the electromagnet, i(t) is the
current flowing in the electromagnet, M is the mass of the magnet, and g is
the gravitational constant. The parameter β is a viscous friction coefficient
that is determined by the material in which the magnet moves, and α is a
field strength constant that is determined by the number of turns of wire on
the electromagnet and the strength of the magnet.

To run this example:

1 Start MATLAB.

2 Type narmamaglev in the MATLAB Command Window. This command
opens the Simulink Editor with the following model. The NARMA-L2
Control block is already in the model.
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3 Double-click the NARMA-L2 Controller block. This opens the following
window. This window enables you to train the NARMA-L2 model. There is
no separate window for the controller, because the controller is determined
directly from the model, unlike the model predictive controller.
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4 This window works the same as the other Plant Identification windows,
so the training process is not repeated. Instead, simulate the NARMA-L2
controller.

5 Return to the Simulink Editor and start the simulation by choosing the
menu option Simulation > Run. As the simulation runs, the plant output
and the reference signal are displayed, as in the following figure.
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Model Reference Control
The neural model reference control architecture uses two neural networks:
a controller network and a plant model network, as shown in the following
figure. The plant model is identified first, and then the controller is trained so
that the plant output follows the reference model output.

The following figure shows the details of the neural network plant model
and the neural network controller as they are implemented in the Neural
Network Toolbox software. Each network has two layers, and you can select
the number of neurons to use in the hidden layers. There are three sets of
controller inputs:

• Delayed reference inputs

• Delayed controller outputs

• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use.
Typically, the number of delays increases with the order of the plant. There
are two sets of inputs to the neural network plant model:

• Delayed controller outputs

• Delayed plant outputs
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As with the controller, you can set the number of delays. The next section
shows how you can set the parameters.

Use the Model Reference Controller Block
This section shows how the neural network controller is trained. The first
step is to copy the Model Reference Control block from the Neural Network
Toolbox blockset to Simulink Editor. See the Simulink documentation if you
are not sure how to do this. This step is skipped in the following example.

An example model is provided with the Neural Network Toolbox software to
show the use of the model reference controller. In this example, the objective
is to control the movement of a simple, single-link robot arm, as shown in
the following figure:
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The equation of motion for the arm is
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where ϕ is the angle of the arm, and u is the torque supplied by the DC motor.

The objective is to train the controller so that the arm tracks the reference
model
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where yr is the output of the reference model, and r is the input reference
signal.

This example uses a neural network controller with a 5-13-1 architecture. The
inputs to the controller consist of two delayed reference inputs, two delayed
plant outputs, and one delayed controller output. A sampling interval of
0.05 seconds is used.

To run this example:

1 Start MATLAB.
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2 Type mrefrobotarm in the MATLAB Command Window. This command
opens the Simulink Editor with the Model Reference Control block already
in the model.

3 Double-click the Model Reference Control block. This opens the following
window for training the model reference controller.

4-26



Model Reference Control

4 The next step would normally be to select Plant Identification, which
opens the Plant Identification window. You would then train the plant
model. Because the Plant Identification window is identical to the one used
with the previous controllers, that process is omitted here.

5 Select Generate Data. The program starts generating the data for
training the controller. After the data is generated, the following window
appears.
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6 Select Accept Data. Return to the Model Reference Control window and
select Train Controller. The program presents one segment of data to
the network and trains the network for a specified number of iterations
(five in this case). This process continues, one segment at a time, until the
entire training set has been presented to the network. Controller training
can be significantly more time consuming than plant model training. This
is because the controller must be trained using dynamic backpropagation
(see [HaJe99]). After the training is complete, the response of the resulting
closed loop system is displayed, as in the following figure.
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7 Go back to the Model Reference Control window. If the performance of the
controller is not accurate, then you can select Train Controller again,
which continues the controller training with the same data set. If you
would like to use a new data set to continue training, select Generate
Data or Import Data before you select Train Controller. (Be sure that
Use Current Weights is selected if you want to continue training with the
same weights.) It might also be necessary to retrain the plant model. If the
plant model is not accurate, it can affect the controller training. For this
example, the controller should be accurate enough, so select OK. This loads
the controller weights into the Simulink model.

8 Return to the Simulink Editor and start the simulation by choosing the
menu option Simulation > Run. As the simulation runs, the plant output
and the reference signal are displayed, as in the following figure.
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Import and Export

Import and Export Networks
The controller and plant model networks that you develop are stored within
Simulink controller blocks. At some point you might want to transfer the
networks into other applications, or you might want to transfer a network
from one controller block to another. You can do this by using the Import
Network and Export Network menu options. The following example leads
you through the export and import processes. (The NARMA-L2 window is
used for this example, but the same procedure applies to all the controllers.)

1 Repeat the first three steps of the NARMA-L2 example in “Use the
NARMA-L2 Controller Block” on page 4-18. The NARMA-L2 Plant
Identification window should now be open.

2 Select File > Export Network, as shown below.

This opens the following window.
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3 Select Export to Disk. The following window opens. Enter the file name
test in the box, and select Save. This saves the controller and plant
networks to disk.

4 Retrieve that data with the Import menu option. Select File > Import
Network, as in the following figure.
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This causes the following window to appear. Follow the steps indicated to
retrieve the data that you previously exported. Once the data is retrieved,
you can load it into the controller block by clicking OK or Apply. Notice
that the window only has an entry for the plant model, even though
you saved both the plant model and the controller. This is because the
NARMA-L2 controller is derived directly from the plant model, so you do
not need to import both networks.
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Import and Export Training Data
The data that you generate to train networks exists only in the corresponding
plant identification or controller training window. You might want to save
the training data to the workspace or to a disk file so that you can load it
again at a later time. You might also want to combine data sets manually and
then load them back into the training window. You can do this by using the
Import and Export buttons. The following example leads you through the
import and export processes. (The NN Predictive Control window is used for
this example, but the same procedure applies to all the controllers.)

1 Repeat the first five steps of the NN Predictive Control example in “Use the
NN Predictive Controller Block” on page 4-6. Then select Accept Data.
The Plant Identification window should then be open, and the Import and
Export buttons should be active.

2 Click Export to open the following window.

3 Click Export to Disk. The following window opens. Enter the filename
testdat in the box, and select Save. This saves the training data structure
to disk.
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4 Now retrieve the data with the import command. Click Import in the
Plant Identification window to open the following window. Follow the steps
indicated on the following page to retrieve the data that you previously
exported. Once the data is imported, you can train the neural network
plant model.
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5 Radial Basis Networks

Introduction
Radial basis networks can require more neurons than standard feedforward
backpropagation networks, but often they can be designed in a fraction of the
time it takes to train standard feedforward networks. They work best when
many training vectors are available.

You might want to consult the following paper on this subject: Chen,
S., C.F.N. Cowan, and P.M. Grant, “Orthogonal Least Squares Learning
Algorithm for Radial Basis Function Networks,” IEEE Transactions on
Neural Networks, Vol. 2, No. 2, March 1991, pp. 302–309.

This chapter discusses two variants of radial basis networks, generalized
regression networks (GRNN) and probabilistic neural networks (PNN). You
can read about them in P.D. Wasserman, Advanced Methods in Neural
Computing, New York: Van Nostrand Reinhold, 1993, on pp. 155–61 and
pp. 35–55, respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNNs
and PNNs can be designed with newgrnn and newpnn, respectively.
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Radial Basis Functions

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different
from that of other neurons. Here the net input to the radbas transfer function
is the vector distance between its weight vector w and the input vector p,
multiplied by the bias b. (The || dist || box in this figure accepts the input
vector p and the single row input weight matrix, and produces the dot product
of the two.)

The transfer function for a radial basis neuron is

radbas n e n( ) = − 2

Here is a plot of the radbas transfer function.
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The radial basis function has a maximum of 1 when its input is 0. As the
distance between w and p decreases, the output increases. Thus, a radial
basis neuron acts as a detector that produces 1 whenever the input p is
identical to its weight vector w.

The bias b allows the sensitivity of the radbas neuron to be adjusted. For
example, if a neuron had a bias of 0.1 it would output 0.5 for any input vector
p at vector distance of 8.326 (0.8326/b) from its weight vector w.

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1

neurons, and an output linear layer of S2 neurons.

The || dist || box in this figure accepts the input vector p and the input
weight matrix IW1,1, and produces a vector having S1 elements. The elements
are the distances between the input vector and vectors iIW

1,1 formed from
the rows of the input weight matrix.

The bias vector b1 and the output of || dist || are combined with the
MATLAB operation .* , which does element-by-element multiplication.

The output of the first layer for a feedforward network net can be obtained
with the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))
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Fortunately, you won’t have to write such lines of code. All the details of
designing this network are built into design functions newrbe and newrb, and
you can obtain their outputs with sim.

You can understand how this network behaves by following an input vector p
through the network to the output a2. If you present an input vector to such a
network, each neuron in the radial basis layer will output a value according to
how close the input vector is to each neuron’s weight vector.

Thus, radial basis neurons with weight vectors quite different from the input
vector p have outputs near zero. These small outputs have only a negligible
effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector
p produces a value near 1. If a neuron has an output of 1, its output weights
in the second layer pass their values to the linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had
outputs of 0s (or very close to 0), the output of the linear layer would be the
active neuron’s output weights. This would, however, be an extreme case.
Typically several neurons are always firing, to varying degrees.

Now look in detail at how the first layer operates. Each neuron’s weighted
input is the distance between the input vector and its weight vector, calculated
with dist. Each neuron’s net input is the element-by-element product of its
weighted input with its bias, calculated with netprod. Each neuron’s output
is its net input passed through radbas. If a neuron’s weight vector is equal to
the input vector (transposed), its weighted input is 0, its net input is 0, and
its output is 1. If a neuron’s weight vector is a distance of spread from the
input vector, its weighted input is spread, its net input is sqrt(−log(.5)) (or
0.8326), therefore its output is 0.5.

Exact Design (newrbe)
You can design radial basis networks with the function newrbe. This function
can produce a network with zero error on training vectors. It is called in
the following way:

net = newrbe(P,T,SPREAD)
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The function newrbe takes matrices of input vectors P and target vectors
T, and a spread constant SPREAD for the radial basis layer, and returns a
network with weights and biases such that the outputs are exactly T when
the inputs are P.

This function newrbe creates as many radbas neurons as there are input
vectors in P, and sets the first-layer weights to P'. Thus, there is a layer of
radbas neurons in which each neuron acts as a detector for a different input
vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis
functions that cross 0.5 at weighted inputs of +/− SPREAD. This determines
the width of an area in the input space to which each neuron responds. If
SPREAD is 4, then each radbas neuron will respond with 0.5 or more to any
input vectors within a vector distance of 4 from their weight vector. SPREAD
should be large enough that neurons respond strongly to overlapping regions
of the input space.

The second-layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code,
b{2}) are found by simulating the first-layer outputs a1 (A{1}), and then
solving the following linear expression:

[W{2,1} b{2}] * [A{1}; ones(1,Q)] = T

You know the inputs to the second layer (A{1}) and the target (T), and the
layer is linear. You can use the following code to calculate the weights and
biases of the second layer to minimize the sum-squared error.

Wb = T/[A{1}; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column.
The sum-squared error is always 0, as explained below.

There is a problem with C constraints (input/target pairs) and each neuron
has C +1 variables (the C weights from the C radbas neurons, and a bias). A
linear problem with C constraints and more than C variables has an infinite
number of zero error solutions.
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Thus, newrbe creates a network with zero error on training vectors. The only
condition required is to make sure that SPREAD is large enough that the active
input regions of the radbas neurons overlap enough so that several radbas
neurons always have fairly large outputs at any given moment. This makes
the network function smoother and results in better generalization for new
input vectors occurring between input vectors used in the design. (However,
SPREAD should not be so large that each neuron is effectively responding in
the same large area of the input space.)

The drawback to newrbe is that it produces a network with as many hidden
neurons as there are input vectors. For this reason, newrbe does not return
an acceptable solution when many input vectors are needed to properly define
a network, as is typically the case.

More Efficient Design (newrb)
The function newrb iteratively creates a radial basis network one neuron at
a time. Neurons are added to the network until the sum-squared error falls
beneath an error goal or a maximum number of neurons has been reached.
The call for this function is

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors P and T, and
design parameters GOAL and SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is
that newrb creates neurons one at a time. At each iteration the input vector
that results in lowering the network error the most is used to create a radbas
neuron. The error of the new network is checked, and if low enough newrb
is finished. Otherwise the next neuron is added. This procedure is repeated
until the error goal is met or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough
that the radbas neurons respond to overlapping regions of the input space,
but not so large that all the neurons respond in essentially the same manner.

Why not always use a radial basis network instead of a standard feedforward
network? Radial basis networks, even when designed efficiently with newrbe,
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tend to have many times more neurons than a comparable feedforward
network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the
input space, while radbas neurons only respond to relatively small regions
of the input space. The result is that the larger the input space (in terms of
number of inputs, and the ranges those inputs vary over) the more radbas
neurons required.

On the other hand, designing a radial basis network often takes much less
time than training a sigmoid/linear network, and can sometimes result in
fewer neurons’ being used, as can be seen in the next example.

Examples
The example demorb1 shows how a radial basis network is used to fit a
function. Here the problem is solved with only five neurons.

Examples demorb3 and demorb4 examine how the spread constant affects the
design process for radial basis networks.

In demorb3, a radial basis network is designed to solve the same problem as
in demorb1. However, this time the spread constant used is 0.01. Thus, each
radial basis neuron returns 0.5 or lower for any input vector with a distance
of 0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis
neurons have a strong output for any given input.

demorb3 showed that having too small a spread constant can result in a
solution that does not generalize from the input/target vectors used in the
design. Example demorb4 shows the opposite problem. If the spread constant
is large enough, the radial basis neurons will output large values (near 1.0)
for all the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to
the network becomes lost. No matter what the input, the second layer outputs
1’s. The function newrb will attempt to find a network, but cannot because of
numerical problems that arise in this situation.
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The moral of the story is, choose a spread constant larger than the distance
between adjacent input vectors, so as to get good generalization, but smaller
than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than
0.1, the interval between inputs, and less than 2, the distance between the
leftmost and rightmost inputs.
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Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. When
an input is presented, the first layer computes distances from the input vector
to the training input vectors and produces a vector whose elements indicate
how close the input is to a training input. The second layer sums these
contributions for each class of inputs to produce as its net output a vector of
probabilities. Finally, a compete transfer function on the output of the second
layer picks the maximum of these probabilities, and produces a 1 for that class
and a 0 for the other classes. The architecture for this system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target
vector has K elements. One of these elements is 1 and the rest are 0. Thus,
each input vector is associated with one of K classes.

The first-layer input weights, IW1,1 (net.IW{1,1}), are set to the transpose of
the matrix formed from the Q training pairs, P'. When an input is presented,
the || dist || box produces a vector whose elements indicate how close the
input is to the vectors of the training set. These elements are multiplied,
element by element, by the bias and sent to the radbas transfer function. An
input vector close to a training vector is represented by a number close to 1 in
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the output vector a1. If an input is close to several training vectors of a single
class, it is represented by several elements of a1 that are close to 1.

The second-layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of
target vectors. Each vector has a 1 only in the row associated with that
particular class of input, and 0s elsewhere. (Use function ind2vec to create
the proper vectors.) The multiplication Ta1 sums the elements of a1 due
to each of the K input classes. Finally, the second-layer transfer function,
compet, produces a 1 corresponding to the largest element of n2, and 0s
elsewhere. Thus, the network classifies the input vector into a specific K class
because that class has the maximum probability of being correct.

Design (newpnn)
You can use the function newpnn to create a PNN. For instance, suppose that
seven input vectors and their corresponding targets are

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
0 1 0 1 3 4 4
0 1 3 4 1 1 3

Tc = [1 1 2 2 3 3 3]

which yields

Tc =
1 1 2 2 3 3 3

You need a target matrix with 1s in the right places. You can get it with the
function ind2vec. It gives a matrix with 0s except at the correct spots. So
execute

T = ind2vec(Tc)

which gives

T =
(1,1) 1
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(1,2) 1
(2,3) 1
(2,4) 1
(3,5) 1
(3,6) 1
(3,7) 1

Now you can create a network and simulate it, using the input P to make sure
that it does produce the correct classifications. Use the function vec2ind to
convert the output Y into a row Yc to make the classifications clear.

net = newpnn(P,T);
Y = sim(net,P);
Yc = vec2ind(Y)

This produces

Yc =
1 1 2 2 3 3 3

You might try classifying vectors other than those that were used to design
the network. Try to classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'
P2 =

1 0 5
4 1 2

Can you guess how these vectors will be classified? If you run the simulation
and plot the vectors as before, you get

Yc =
2 1 3

These results look good, for these test vectors were quite close to members
of classes 2, 1, and 3, respectively. The network has managed to generalize
its operation to properly classify vectors other than those used to design the
network.

You might want to try demopnn1. It shows how to design a PNN, and how the
network can successfully classify a vector not used in the design.
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Generalized Regression Networks

Network Architecture
A generalized regression neural network (GRNN) is often used for function
approximation. It has a radial basis layer and a special linear layer.

The architecture for the GRNN is shown below. It is similar to the radial
basis network, but has a slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2

elements in vector n2. Each element is the dot product of a row of LW2,1 and
the input vector a1, all normalized by the sum of the elements of a1. For
instance, suppose that

LW{2,1}= [1 -2;3 4;5 6];
a{1} = [0.7;0.3];

Then

aout = normprod(LW{2,1},a{1})
aout =

0.1000
3.3000
5.3000
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The first layer is just like that for newrbe networks. It has as many neurons
as there are input/ target vectors in P. Specifically, the first-layer weights
are set to P'. The bias b1 is set to a column vector of 0.8326/SPREAD. The
user chooses SPREAD, the distance an input vector must be from a neuron’s
weight vector to be 0.5.

Again, the first layer operates just like the newrbe radial basis layer described
previously. Each neuron’s weighted input is the distance between the input
vector and its weight vector, calculated with dist. Each neuron’s net input
is the product of its weighted input with its bias, calculated with netprod.
Each neuron’s output is its net input passed through radbas. If a neuron’s
weight vector is equal to the input vector (transposed), its weighted input will
be 0, its net input will be 0, and its output will be 1. If a neuron’s weight
vector is a distance of spread from the input vector, its weighted input will
be spread, and its net input will be sqrt(−log(.5)) (or 0.8326). Therefore its
output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here
LW{2,1} is set to T.

Suppose you have an input vector p close to pi, one of the input vectors among
the input vector/target pairs used in designing layer 1 weights. This input p
produces a layer 1 ai output close to 1. This leads to a layer 2 output close to
ti, one of the targets used to form layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1
neurons will respond with significant outputs. Therefore if spread is small
the radial basis function is very steep, so that the neuron with the weight
vector closest to the input will have a much larger output than other neurons.
The network tends to respond with the target vector associated with the
nearest design input vector.

As spread becomes larger the radial basis function’s slope becomes smoother
and several neurons can respond to an input vector. The network then acts
as if it is taking a weighted average between target vectors whose design
input vectors are closest to the new input vector. As spread becomes larger
more and more neurons contribute to the average, with the result that the
network function becomes smoother.
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Design (newgrnn)
You can use the function newgrnn to create a GRNN. For instance, suppose
that three input and three target vectors are defined as

P = [4 5 6];
T = [1.5 3.6 6.7];

You can now obtain a GRNN with

net = newgrnn(P,T);

and simulate it with

P = 4.5;
v = sim(net,P);

You might want to try demogrn1. It shows how to approximate a function
with a GRNN.

Function Description

compet Competitive transfer function.

dist Euclidean distance weight function.

dotprod Dot product weight function.

ind2vec Convert indices to vectors.

negdist Negative Euclidean distance weight function.

netprod Product net input function.

newgrnn Design a generalized regression neural network.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

normprod Normalized dot product weight function.

radbas Radial basis transfer function.

vec2ind Convert vectors to indices.
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Introduction to Self-Organizing and LVQ
Self-organizing in networks is one of the most fascinating topics in the neural
network field. Such networks can learn to detect regularities and correlations
in their input and adapt their future responses to that input accordingly.
The neurons of competitive networks learn to recognize groups of similar
input vectors. Self-organizing maps learn to recognize groups of similar input
vectors in such a way that neurons physically near each other in the neuron
layer respond to similar input vectors. Self-organizing maps do not have
target vectors, since their purpose is to divide the input vectors into clusters
of similar vectors. There is no desired output for these types of networks.

Learning vector quantization (LVQ) is a method for training competitive
layers in a supervised manner (with target outputs). A competitive layer
automatically learns to classify input vectors. However, the classes that
the competitive layer finds are dependent only on the distance between
input vectors. If two input vectors are very similar, the competitive layer
probably will put them in the same class. There is no mechanism in a strictly
competitive layer design to say whether or not any two input vectors are in
the same class or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target
classes chosen by the user.

You might consult the following reference: Kohonen, T., Self-Organization
and Associative Memory, 2nd Edition, Berlin: Springer-Verlag, 1987.

Important Self-Organizing and LVQ Functions
You can create competitive layers and self-organizing maps with competlayer
and selforgmap, respectively.

You can create an LVQ network with the function lvqnet.
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Competitive Learning
The neurons in a competitive layer distribute themselves to recognize
frequently presented input vectors.

Architecture
The architecture for a competitive network is shown below.

The dist box in this figure accepts the input vector p and the input
weight matrix IW1,1, and produces a vector having S1 elements. The elements
are the negative of the distances between the input vector and vectors iIW

1,1

formed from the rows of the input weight matrix.

Compute the net input n1 of a competitive layer by finding the negative
distance between input vector p and the weight vectors and adding the biases
b. If all biases are zero, the maximum net input a neuron can have is 0. This
occurs when the input vector p equals that neuron’s weight vector.

The competitive transfer function accepts a net input vector for a layer and
returns neuron outputs of 0 for all neurons except for the winner, the neuron
associated with the most positive element of net input n1. The winner’s
output is 1. If all biases are 0, then the neuron whose weight vector is closest
to the input vector has the least negative net input and, therefore, wins the
competition to output a 1.

Reasons for using biases with competitive layers are introduced in “Bias
Learning Rule (learncon)” on page 6-5.
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Creating a Competitive Neural Network
(competlayer)
You can create a competitive neural network with the function competlayer.
A simple example shows how this works.

Suppose you want to divide the following four two-element vectors into two
classes.

p = [.1 .8 .1 .9; .2 .9 .1 .8]
p =

0.1000 0.8000 0.1000 0.9000
0.2000 0.9000 0.1000 0.8000

There are two vectors near the origin and two vectors near (1,1).

First, create a two-neuron competitive layer.:

net = competlayer(2);

Now you have a network, but you need to train it to do the classification job.

The first time the network is trained, its weights will initialized to the centers
of the input ranges with the function midpoint. You can check see these
initial values using the number of neurons and the input data:

wts = midpoint(2,p)
wts =

0.5000 0.5000
0.5000 0.5000

These weights are indeed the values at the midpoint of the range (0 to 1)
of the inputs.

The initial biases are computed by initcon, which gives

biases = initcon(2)
biases =

5.4366
5.4366
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Recall that each neuron competes to respond to an input vector p. If the biases
are all 0, the neuron whose weight vector is closest to p gets the highest net
input and, therefore, wins the competition, and outputs 1. All other neurons
output 0. You want to adjust the winning neuron so as to move it closer to the
input. A learning rule to do this is discussed in the next section.

Kohonen Learning Rule (learnk)
The weights of the winning neuron (a row of the input weight matrix) are
adjusted with the Kohonen learning rule. Supposing that the ith neuron
wins, the elements of the ith row of the input weight matrix are adjusted
as shown below.

i i iq q q qIW IW p IW1 1 1 1 1 11 1, , ,( ) ( ) ( ( ) ( ))= − + − −

The Kohonen rule allows the weights of a neuron to learn an input vector, and
because of this it is useful in recognition applications.

Thus, the neuron whose weight vector was closest to the input vector is
updated to be even closer. The result is that the winning neuron is more
likely to win the competition the next time a similar vector is presented, and
less likely to win when a very different input vector is presented. As more
and more inputs are presented, each neuron in the layer closest to a group
of input vectors soon adjusts its weight vector toward those input vectors.
Eventually, if there are enough neurons, every cluster of similar input vectors
will have a neuron that outputs 1 when a vector in the cluster is presented,
while outputting a 0 at all other times. Thus, the competitive network learns
to categorize the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this
toolbox.

Bias Learning Rule (learncon)
One of the limitations of competitive networks is that some neurons might
not always be allocated. In other words, some neuron weight vectors might
start out far from any input vectors and never win the competition, no matter
how long the training is continued. The result is that their weights do not get
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to learn and they never win. These unfortunate neurons, referred to as dead
neurons, never perform a useful function.

To stop this, use biases to give neurons that only win the competition rarely
(if ever) an advantage over neurons that win often. A positive bias, added to
the negative distance, makes a distant neuron more likely to win.

To do this job a running average of neuron outputs is kept. It is equivalent to
the percentages of times each output is 1. This average is used to update the
biases with the learning function learncon so that the biases of frequently
active neurons become smaller, and biases of infrequently active neurons
become larger.

As the biases of infrequently active neurons increase, the input space to
which those neurons respond increases. As that input space increases, the
infrequently active neuron responds and moves toward more input vectors.
Eventually, the neuron responds to the same number of vectors as other
neurons.

This has two good effects. First, if a neuron never wins a competition because
its weights are far from any of the input vectors, its bias eventually becomes
large enough so that it can win. When this happens, it moves toward some
group of input vectors. Once the neuron’s weights have moved into a group of
input vectors and the neuron is winning consistently, its bias will decrease to
0. Thus, the problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify
roughly the same percentage of input vectors. Thus, if a region of the input
space is associated with a larger number of input vectors than another region,
the more densely filled region will attract more neurons and be classified into
smaller subsections.

The learning rates for learncon are typically set an order of magnitude or
more smaller than for learnk to make sure that the running average is
accurate.

Training
Now train the network for 500 epochs. You can use either train or adapt.
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net.trainParam.epochs = 500;
net = train(net,p);

Note that train for competitive networks uses the training function trainr.
You can verify this by executing the following code after creating the network.

net.trainFcn

This code produces

ans =
trainr

For each epoch, all training vectors (or sequences) are each presented once
in a different random order with the network and weight and bias values
updated after each individual presentation.

Next, supply the original vectors as input to the network, simulate the
network, and finally convert its output vectors to class indices.

a = sim(net,p)
ac = vec2ind(a)

This yields

ac =
1 2 1 2

You see that the network is trained to classify the input vectors into two
groups, those near the origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases. They are

wts =
0.1000 0.1467
0.8474 0.8525

biases =
5.4961
5.3783
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(You might get different answers when you run this problem, because a
random seed is used to pick the order of the vectors presented to the network
for training.) Note that the first vector (formed from the first row of the
weight matrix) is near the input vectors close to the origin, while the vector
formed from the second row of the weight matrix is close to the input vectors
near (1,1). Thus, the network has been trained—just by exposing it to the
inputs—to classify them.

During training each neuron in the layer closest to a group of input vectors
adjusts its weight vector toward those input vectors. Eventually, if there are
enough neurons, every cluster of similar input vectors has a neuron that
outputs 1 when a vector in the cluster is presented, while outputting a 0 at all
other times. Thus, the competitive network learns to categorize the input.

Graphical Example
Competitive layers can be understood better when their weight vectors
and input vectors are shown graphically. The diagram below shows 48
two-element input vectors represented with + markers.

The input vectors above appear to fall into clusters. You can use a competitive
network of eight neurons to classify the vectors into such clusters.

6-8



Competitive Learning

Try democ1 to see a dynamic example of competitive learning.
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Self-Organizing Feature Maps
Self-organizing feature maps (SOFM) learn to classify input vectors according
to how they are grouped in the input space. They differ from competitive
layers in that neighboring neurons in the self-organizing map learn to
recognize neighboring sections of the input space. Thus, self-organizing maps
learn both the distribution (as do competitive layers) and topology of the input
vectors they are trained on.

The neurons in the layer of an SOFM are arranged originally in physical
positions according to a topology function. The function gridtop, hextop, or
randtop can arrange the neurons in a grid, hexagonal, or random topology.
Distances between neurons are calculated from their positions with a distance
function. There are four distance functions, dist, boxdist, linkdist, and
mandist. Link distance is the most common. These topology and distance
functions are described in “Topologies (gridtop, hextop, randtop)” on page 6-11
and “Distance Functions (dist, linkdist, mandist, boxdist)” on page 6-15.

Here a self-organizing feature map network identifies a winning neuron i*
using the same procedure as employed by a competitive layer. However,
instead of updating only the winning neuron, all neurons within a certain
neighborhood Ni* (d) of the winning neuron are updated, using the Kohonen
rule. Specifically, all such neurons i Ni* (d) are adjusted as follows:

i i iq q q qw w p w( ) ( ) ( ( ) ( ))= − + − −1 1

or

i iq q qw w p( ) ( ) ( ) ( )= − − +1 1 

Here the neighborhood Ni* (d) contains the indices for all of the neurons that
lie within a radius d of the winning neuron i*.

N d j d di ij( ) ,= ≤{ }

Thus, when a vector p is presented, the weights of the winning neuron and
its close neighbors move toward p. Consequently, after many presentations,
neighboring neurons have learned vectors similar to each other.
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Another version of SOFM training, called the batch algorithm, presents the
whole data set to the network before any weights are updated. The algorithm
then determines a winning neuron for each input vector. Each weight vector
then moves to the average position of all of the input vectors for which it is a
winner, or for which it is in the neighborhood of a winner.

To illustrate the concept of neighborhoods, consider the figure below. The
left diagram shows a two-dimensional neighborhood of radius d = 1 around
neuron 13. The right diagram shows a neighborhood of radius d = 2.

These neighborhoods could be written as N13(1) = {8, 12, 13, 14, 18} and
N13(2) = {3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23}.

The neurons in an SOFM do not have to be arranged in a two-dimensional
pattern. You can use a one-dimensional arrangement, or three or more
dimensions. For a one-dimensional SOFM, a neuron has only two neighbors
within a radius of 1 (or a single neighbor if the neuron is at the end of the
line). You can also define distance in different ways, for instance, by using
rectangular and hexagonal arrangements of neurons and neighborhoods.
The performance of the network is not sensitive to the exact shape of the
neighborhoods.

Topologies (gridtop, hextop, randtop)
You can specify different topologies for the original neuron locations with the
functions gridtop, hextop, and randtop.

The gridtop topology starts with neurons in a rectangular grid similar to that
shown in the previous figure. For example, suppose that you want a 2-by-3
array of six neurons. You can get this with
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pos = gridtop(2,3)
pos =

0 1 0 1 0 1
0 0 1 1 2 2

Here neuron 1 has the position (0,0), neuron 2 has the position (1,0), and
neuron 3 has the position (0,1), etc.

Note that had you asked for a gridtop with the arguments reversed, you
would have gotten a slightly different arrangement:

pos = gridtop(3,2)
pos =

0 1 2 0 1 2
0 0 0 1 1 1

An 8-by-10 set of neurons in a gridtop topology can be created and plotted
with the following code:

pos = gridtop(8,10);
plotsom(pos)

to give the following graph.
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As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons, but they are in a
hexagonal pattern. A 2-by-3 pattern of hextop neurons is generated as follows:

pos = hextop(2,3)
pos =

0 1.0000 0.5000 1.5000 0 1.0000
0 0 0.8660 0.8660 1.7321 1.7321

Note that hextop is the default pattern for SOM networks generated with
selforgmap.

You can create and plot an 8-by-10 set of neurons in a hextop topology with
the following code:
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pos = hextop(8,10);
plotsom(pos)

to give the following graph.

Note the positions of the neurons in a hexagonal arrangement.

Finally, the randtop function creates neurons in an N-dimensional random
pattern. The following code generates a random pattern of neurons.

pos = randtop(2,3)
pos =

0 0.7620 0.6268 1.4218 0.0663 0.7862
0.0925 0 0.4984 0.6007 1.1222 1.4228
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You can create and plot an 8-by-10 set of neurons in a randtop topology with
the following code:

pos = randtop(8,10);
plotsom(pos)

to give the following graph.

For examples, see the help for these topology functions.

Distance Functions (dist, linkdist, mandist, boxdist)
In this toolbox, there are four ways to calculate distances from a particular
neuron to its neighbors. Each calculation method is implemented with a
special function.
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The dist function has been discussed before. It calculates the Euclidean
distance from a home neuron to any other neuron. Suppose you have three
neurons:

pos2 = [0 1 2; 0 1 2]
pos2 =

0 1 2
0 1 2

You find the distance from each neuron to the other with

D2 = dist(pos2)
D2 =

0 1.4142 2.8284
1.4142 0 1.4142
2.8284 1.4142 0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1
to neuron 2 is 1.414, etc. These are indeed the Euclidean distances as you
know them.

The graph below shows a home neuron in a two-dimensional (gridtop) layer
of neurons. The home neuron has neighborhoods of increasing diameter
surrounding it. A neighborhood of diameter 1 includes the home neuron
and its immediate neighbors. The neighborhood of diameter 2 includes the
diameter 1 neurons and their immediate neighbors.
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As for the dist function, all the neighborhoods for an S-neuron layer map
are represented by an S-by-S matrix of distances. The particular distances
shown above (1 in the immediate neighborhood, 2 in neighborhood 2, etc.),
are generated by the function boxdist. Suppose that you have six neurons
in a gridtop configuration.

pos = gridtop(2,3)
pos =

0 1 0 1 0 1
0 0 1 1 2 2

Then the box distances are

d = boxdist(pos)
d =

0 1 1 1 2 2
1 0 1 1 2 2
1 1 0 1 1 1
1 1 1 0 1 1
2 2 1 1 0 1
2 2 1 1 1 0

The distance from neuron 1 to 2, 3, and 4 is just 1, for they are in the
immediate neighborhood. The distance from neuron 1 to both 5 and 6 is 2.
The distance from both 3 and 4 to all other neurons is just 1.

The link distance from one neuron is just the number of links, or steps, that
must be taken to get to the neuron under consideration. Thus, if you calculate
the distances from the same set of neurons with linkdist, you get

dlink =
0 1 1 2 2 3
1 0 2 1 3 2
1 2 0 1 1 2
2 1 1 0 2 1
2 3 1 2 0 1
3 2 2 1 1 0

The Manhattan distance between two vectors x and y is calculated as

D = sum(abs(x-y))
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Thus if you have

W1 = [1 2; 3 4; 5 6]
W1 =

1 2
3 4
5 6

and

P1 = [1;1]
P1 =

1
1

then you get for the distances

Z1 = mandist(W1,P1)
Z1 =

1
5
9

The distances calculated with mandist do indeed follow the mathematical
expression given above.

Architecture
The architecture for this SOFM is shown below.
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This architecture is like that of a competitive network, except no bias is used
here. The competitive transfer function produces a 1 for output element a1i
corresponding to i*, the winning neuron. All other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron
are updated along with the winning neuron. You can choose from various
topologies of neurons. Similarly, you can choose from various distance
expressions to calculate neurons that are close to the winning neuron.

Create a Self-Organizing Map Neural Network
(selforgmap)
You can create a new SOM network with the function selforgmap. This
function defines variables used in two phases of learning:

• Ordering-phase learning rate

• Ordering-phase steps

• Tuning-phase learning rate

• Tuning-phase neighborhood distance

These values are used for training and adapting.

Consider the following example.
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Suppose that you want to create a network having input vectors with two
elements, and that you want to have six neurons in a hexagonal 2-by-3
network. The code to obtain this network is

net = selforgmap([2,3]);

Suppose that the vectors to train on are

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8]

You can configure the network to input the data and plot all of this with

net = configure(net,P);
plotsompos(net,P);

to give
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The green spots are the training vectors. The initialization for selforgmap is
initsompc, which spreads the initial weights across the input space. Note
that they are initially some distance from the training vectors.

When simulating a network, the negative distances between each neuron’s
weight vector and the input vector are calculated (negdist) to get the
weighted inputs. The weighted inputs are also the net inputs (netsum). The
net inputs compete (compet) so that only the neuron with the most positive
net input will output a 1.
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Training (learnsomb)
The default learning in a self-organizing feature map occurs in the batch
mode (trainbu). The weight learning function for the self-organizing map is
learnsomb.

First, the network identifies the winning neuron for each input vector. Each
weight vector then moves to the average position of all of the input vectors for
which it is a winner or for which it is in the neighborhood of a winner. The
distance that defines the size of the neighborhood is altered during training
through two phases.

Ordering Phase
This phase lasts for the given number of steps. The neighborhood distance
starts at a given initial distance, and decreases to the tuning neighborhood
distance (1.0). As the neighborhood distance decreases over this phase, the
neurons of the network typically order themselves in the input space with the
same topology in which they are ordered physically.

Tuning Phase
This phase lasts for the rest of training or adaption. The neighborhood size
has decreased below 1 so only the winning neuron learns for each sample.

Now take a look at some of the specific values commonly used in these
networks.

Learning occurs according to the learnsomb learning parameter, shown here
with its default value.

Learning Parameter Default Value Purpose

LP.init_neighborhood 3 Initial neighborhood size

LP.steps 100 Ordering phase steps

The neighborhood size NS is altered through two phases: an ordering phase
and a tuning phase.

The ordering phase lasts as many steps as LP.steps. During this
phase, the algorithm adjusts ND from the initial neighborhood size
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LP.init_neighborhood down to 1. It is during this phase that neuron
weights order themselves in the input space consistent with the associated
neuron positions.

During the tuning phase, ND is less than 1. During this phase, the weights are
expected to spread out relatively evenly over the input space while retaining
their topological order found during the ordering phase.

Thus, the neuron’s weight vectors initially take large steps all together
toward the area of input space where input vectors are occurring. Then as the
neighborhood size decreases to 1, the map tends to order itself topologically
over the presented input vectors. Once the neighborhood size is 1, the network
should be fairly well ordered. The training continues in order to give the
neurons time to spread out evenly across the input vectors.

As with competitive layers, the neurons of a self-organizing map will order
themselves with approximately equal distances between them if input vectors
appear with even probability throughout a section of the input space. If input
vectors occur with varying frequency throughout the input space, the feature
map layer tends to allocate neurons to an area in proportion to the frequency
of input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both
the topology and distribution of their input.

You can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);
plotsompos(net,P);
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You can see that the neurons have started to move toward the various
training groups. Additional training is required to get the neurons closer
to the various groups.

As noted previously, self-organizing maps differ from conventional competitive
learning in terms of which neurons get their weights updated. Instead of
updating only the winner, feature maps update the weights of the winner and
its neighbors. The result is that neighboring neurons tend to have similar
weight vectors and to be responsive to similar input vectors.
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Examples
Two examples are described briefly below. You also might try the similar
examples demosm1 and demosm2.

One-Dimensional Self-Organizing Map
Consider 100 two-element unit input vectors spread evenly between 0° and
90°.

angles = 0:0.5*pi/99:0.5*pi;

Here is a plot of the data.

P = [sin(angles); cos(angles)];

A self-organizing map is defined as a one-dimensional layer of 10 neurons.
This map is to be trained on these input vectors shown above. Originally
these neurons are at the center of the figure.
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Of course, because all the weight vectors start in the middle of the input
vector space, all you see now is a single circle.

As training starts the weight vectors move together toward the input vectors.
They also become ordered as the neighborhood size decreases. Finally the
layer adjusts its weights so that each neuron responds strongly to a region
of the input space occupied by input vectors. The placement of neighboring
neuron weight vectors also reflects the topology of the input vectors.
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Note that self-organizing maps are trained with input vectors in a random
order, so starting with the same initial vectors does not guarantee identical
training results.

Two-Dimensional Self-Organizing Map
This example shows how a two-dimensional self-organizing map can be
trained.

First some random input data is created with the following code:

P = rands(2,1000);

Here is a plot of these 1000 input vectors.
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A 5-by-6 two-dimensional map of 30 neurons is used to classify these input
vectors. The two-dimensional map is five neurons by six neurons, with
distances calculated according to the Manhattan distance neighborhood
function mandist.

The map is then trained for 5000 presentation cycles, with displays every
20 cycles.

Here is what the self-organizing map looks like after 40 cycles.
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The weight vectors, shown with circles, are almost randomly placed. However,
even after only 40 presentation cycles, neighboring neurons, connected by
lines, have weight vectors close together.

Here is the map after 120 cycles.

After 120 cycles, the map has begun to organize itself according to the
topology of the input space, which constrains input vectors.

The following plot, after 500 cycles, shows the map more evenly distributed
across the input space.
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Finally, after 5000 cycles, the map is rather evenly spread across the input
space. In addition, the neurons are very evenly spaced, reflecting the even
distribution of input vectors in this problem.

Thus a two-dimensional self-organizing map has learned the topology of its
inputs’ space.
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It is important to note that while a self-organizing map does not take long
to organize itself so that neighboring neurons recognize similar inputs, it
can take a long time for the map to finally arrange itself according to the
distribution of input vectors.

Training with the Batch Algorithm
The batch training algorithm is generally much faster than the incremental
algorithm, and it is the default algorithm for SOFM training. You can
experiment with this algorithm on a simple data set with the following
commands:

x = simplecluster_dataset
net = selforgmap([6 6]);
net = train(net,x);

This command sequence creates and trains a 6-by-6 two-dimensional map of
36 neurons. During training, the following figure appears.
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There are several useful visualizations that you can access from this window.
If you click SOM Weight Positions, the following figure appears, which
shows the locations of the data points and the weight vectors. As the figure
indicates, after only 200 iterations of the batch algorithm, the map is well
distributed through the input space.
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When the input space is high dimensional, you cannot visualize all the
weights at the same time. In this case, click SOM Neighbor Distances. The
following figure appears, which indicates the distances between neighboring
neurons.

This figure uses the following color coding:

• The blue hexagons represent the neurons.

• The red lines connect neighboring neurons.

• The colors in the regions containing the red lines indicate the distances
between neurons.

• The darker colors represent larger distances.

• The lighter colors represent smaller distances.
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A group of light segments appear in the upper-left region, bounded by some
darker segments. This grouping indicates that the network has clustered the
data into two groups. These two groups can be seen in the previous weight
position figure. The lower-right region of that figure contains a small group of
tightly clustered data points. The corresponding weights are closer together
in this region, which is indicated by the lighter colors in the neighbor distance
figure. Where weights in this small region connect to the larger region, the
distances are larger, as indicated by the darker band in the neighbor distance
figure. The segments in the lower-right region of the neighbor distance figure
are darker than those in the upper left. This color difference indicates that
data points in this region are farther apart. This distance is confirmed in
the weight positions figure.

Another useful figure can tell you how many data points are associated with
each neuron. Click SOM Sample Hits to see the following figure. It is best if
the data are fairly evenly distributed across the neurons. In this example,
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the data are concentrated a little more in the upper-left neurons, but overall
the distribution is fairly even.

You can also visualize the weights themselves using the weight plane figure.
Click SOM Weight Planes in the training window to obtain the next figure.
There is a weight plane for each element of the input vector (two, in this case).
They are visualizations of the weights that connect each input to each of the
neurons. (Lighter and darker colors represent larger and smaller weights,
respectively.) If the connection patterns of two inputs are very similar, you
can assume that the inputs were highly correlated. In this case, input 1 has
connections that are very different than those of input 2.
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You can also produce all of the previous figures from the command line.
Try these plotting commands: plotsomhits, plotsomnc, plotsomnd,
plotsomplanes, plotsompos, and plotsomtop.
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Learning Vector Quantization Networks

Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The
competitive layer learns to classify input vectors in much the same way
as the competitive layers of “Self-Organizing Feature Maps” on page 6-10
described in this topic. The linear layer transforms the competitive layer’s
classes into target classifications defined by the user. The classes learned
by the competitive layer are referred to as subclasses and the classes of the
linear layer as target classes.

Both the competitive and linear layers have one neuron per (sub or target)
class. Thus, the competitive layer can learn up to S1 subclasses. These, in
turn, are combined by the linear layer to form S2 target classes. (S1 is always
larger than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn
subclasses of the input space that belongs to the linear layer target class 2.
Then competitive neurons 1, 2, and 3 will have LW2,1 weights of 1.0 to neuron
n2 in the linear layer, and weights of 0 to all other linear neurons. Thus, the
linear neuron produces a 1 if any of the three competitive neurons (1, 2, or
3) wins the competition and outputs a 1. This is how the subclasses of the
competitive layer are combined into target classes in the linear layer.
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In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero)
effectively picks the ith column of LW2,1 as the network output. Each such
column contains a single 1, corresponding to a specific class. Thus, subclass
1s from layer 1 are put into various classes by the LW2,1a1 multiplication in
layer 2.

You know ahead of time what fraction of the layer 1 neurons should be
classified into the various class outputs of layer 2, so you can specify the
elements of LW2,1 at the start. However, you have to go through a training
procedure to get the first layer to produce the correct subclass output for each
vector of the training set. This training is discussed in “Training” on page 6-6.
First, consider how to create the original network.

Creating an LVQ Network
You can create an LVQ network with the function lvqnet,

net = lvqnet(S1,LR,LF)

where

• S1 is the number of first-layer hidden neurons.

• LR is the learning rate (default 0.01).

• LF is the learning function (default is learnlv1).

Suppose you have 10 input vectors. Create a network that assigns each of
these input vectors to one of four subclasses. Thus, there are four neurons in
the first competitive layer. These subclasses are then assigned to one of two
output classes by the two neurons in layer 2. The input vectors and targets
are specified by

P = [-3 -2 -2 0 0 0 0 2 2 3; 0 1 -1 2 1 -1 -2 1 -1 0];

and

Tc = [1 1 1 2 2 2 2 1 1 1];

It might help to show the details of what you get from these two lines of code.

P,Tc
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P =
-3 -2 -2 0 0 0 0 2 2 3
0 1 -1 2 1 -1 -2 1 -1 0

Tc =
1 1 1 2 2 2 2 1 1 1

A plot of the input vectors follows.

As you can see, there are four subclasses of input vectors. You want a network
that classifies p1, p2, p3, p8, p9, and p10 to produce an output of 1, and that
classifies vectors p4, p5, p6, and p7 to produce an output of 2. Note that this
problem is nonlinearly separable, and so cannot be solved by a perceptron, but
an LVQ network has no difficulty.

Next convert the Tc matrix to target vectors.

T = ind2vec(Tc);

This gives a sparse matrix T that can be displayed in full with

targets = full(T)

which gives
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targets =
1 1 1 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0

This looks right. It says, for instance, that if you have the first column of P
as input, you should get the first column of targets as an output; and that
output says the input falls in class 1, which is correct. Now you are ready to
call lvqnet.

Call lvqnet to create a network with four neurons.

net = lvqnet(4);

Configure and confirm the initial values of the first-layer weight matrix
are initialized by the function midpoint to values in the center of the input
data range.

net = configure(net,P,T);
net.IW{1}
ans =

0 0
0 0
0 0
0 0

Confirm that the second-layer weights have 60% (6 of the 10 in Tc) of its
columns with a 1 in the first row, (corresponding to class 1), and 40% of its
columns have a 1 in the second row (corresponding to class 2). With only
four columns, the 60% and 40% actually round to 50% and there are two
1’s in each row.

net.LW{2,1}
ans =

1 1 0 0
0 0 1 1

This makes sense too. It says that if the competitive layer produces a 1 as the
first or second element, the input vector is classified as class 1; otherwise it
is a class 2.
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You might notice that the first two competitive neurons are connected to
the first linear neuron (with weights of 1), while the second two competitive
neurons are connected to the second linear neuron. All other weights between
the competitive neurons and linear neurons have values of 0. Thus, each
of the two target classes (the linear neurons) is, in fact, the union of two
subclasses (the competitive neurons).

You can simulate the network with sim. Use the original P matrix as input
just to see what you get.

Y = net(P);
Yc = vec2ind(Y)
Yc =

1 1 1 1 1 1 1 1 1 1

The network classifies all inputs into class 1. Because this is not what you
want, you have to train the network (adjusting the weights of layer 1 only),
before you can expect a good result. The next two sections discuss two LVQ
learning rules and the training process.

LVQ1 Learning Rule (learnlv1)
LVQ learning in the competitive layer is based on a set of input/target pairs.

p t p t p t1 1 2 2, , , , ,{ } { } { } Q Q

Each target vector has a single 1. The rest of its elements are 0. The 1 tells
the proper classification of the associated input. For instance, consider the
following training pair.
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⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

,

Here there are input vectors of three elements, and each input vector is to
be assigned to one of four classes. The network is to be trained so that it
classifies the input vector shown above into the third of four classes.
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To train the network, an input vector p is presented, and the distance from p
to each row of the input weight matrix IW1,1 is computed with the function
negdist. The hidden neurons of layer 1 compete. Suppose that the ith
element of n1 is most positive, and neuron i* wins the competition. Then
the competitive transfer function produces a 1 as the i*th element of a1. All
other elements of a1 are 0.

When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects
the class k* associated with the input. Thus, the network has assigned the
input vector p to class k* and α2k* will be 1. Of course, this assignment can be
a good one or a bad one, for tk* can be 1 or 0, depending on whether the input
belonged to class k* or not.

Adjust the i*th row of IW1,1 in such a way as to move this row closer to the
input vector p if the assignment is correct, and to move the row away from p
if the assignment is incorrect. If p is classified correctly,

k kt∗ ∗= =( )2 1

compute the new value of the i*th row of IW1,1 as

i i iq q q q∗ ∗ ∗= − + − −IW IW p IW1 1 1 1 1 11 1, , ,( ) ( ) ( ( ) ( ))

On the other hand, if p is classified incorrectly,

k kt∗ ∗= ≠ =( )2 1 0

compute the new value of the i*th row of IW1,1 as

i i iq q q q∗ ∗ ∗= − − − −IW IW p IW1 1 1 1 1 11 1, , ,( ) ( ) ( ( ) ( ))

You can make these corrections to the i*th row of IW1,1 automatically, without
affecting other rows of IW1,1, by back-propagating the output errors to layer 1.
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Such corrections move the hidden neuron toward vectors that fall into the
class for which it forms a subclass, and away from vectors that fall into other
classes.

The learning function that implements these changes in the layer 1 weights
in LVQ networks is learnlv1. It can be applied during training.

Training
Next you need to train the network to obtain first-layer weights that lead to
the correct classification of input vectors. You do this with train as with the
following commands. First, set the training epochs to 150. Then, use train:

net.trainParam.epochs = 150;
net = train(net,P,T);

Now confirm the first-layer weights.

net.IW{1,1}
ans =

0.3283 0.0051
-0.1366 0.0001
-0.0263 0.2234

0 -0.0685

The following plot shows that these weights have moved toward their
respective classification groups.
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To confirm that these weights do indeed lead to the correct classification, take
the matrix P as input and simulate the network. Then see what classifications
are produced by the network.

Y = net(P);
Yc = vec2ind(Y)

This gives

Yc =
1 1 1 2 2 2 2 1 1 1

which is expected. As a last check, try an input close to a vector that was
used in training.

pchk1 = [0; 0.5];
Y = net(pchk1);
Yc1 = vec2ind(Y)

This gives

Yc1 =
2
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This looks right, because pchk1 is close to other vectors classified as 2.
Similarly,

pchk2 = [1; 0];
Y = net(pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
1

This looks right too, because pchk2 is close to other vectors classified as 1.

You might want to try the example program demolvq1. It follows the
discussion of training given above.

Supplemental LVQ2.1 Learning Rule (learnlv2)
The following learning rule is one that might be applied after first applying
LVQ1. It can improve the result of the first learning. This particular version
of LVQ2 (referred to as LVQ2.1 in the literature [Koho97]) is embodied in the
function learnlv2. Note again that LVQ2.1 is to be used only after LVQ1
has been applied.

Learning here is similar to that in learnlv2 except now two vectors of layer 1
that are closest to the input vector can be updated, provided that one belongs
to the correct class and one belongs to a wrong class, and further provided
that the input falls into a “window” near the midplane of the two vectors.

The window is defined by

min ,
d
d

d

d
si

j

j

i

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ >

where
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s
w
w

≡ −
+

1
1

(where di and dj are the Euclidean distances of p from i*IW
1,1 and j*IW

1,1,
respectively). Take a value for w in the range 0.2 to 0.3. If you pick, for
instance, 0.25, then s = 0.6. This means that if the minimum of the two
distance ratios is greater than 0.6, the two vectors are adjusted. That is, if
the input is near the midplane, adjust the two vectors, provided also that
the input vector p and j*IW

1,1 belong to the same class, and p and i*IW
1,1 do

not belong in the same class.

The adjustments made are

i i iq q q q∗ ∗ ∗= − − − −IW IW p IW1 1 1 1 1 11 1, , ,( ) ( ) ( ( ) ( ))

and

j j jq q q q∗ ∗ ∗= − + − −IW IW p IW1 1 1 1 1 11 1, , ,( ) ( ) ( ( ) ( ))

Thus, given two vectors closest to the input, as long as one belongs to the
wrong class and the other to the correct class, and as long as the input falls in
a midplane window, the two vectors are adjusted. Such a procedure allows
a vector that is just barely classified correctly with LVQ1 to be moved even
closer to the input, so the results are more robust.

Function Description

competlayer Create a competitive layer.

learnk Kohonen learning rule.

selforgmap Create a self-organizing map.

learncon Conscience bias learning function.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.
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Function Description

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.

lvqnet Create a learning vector quantization network.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.
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Introduction
The ADALINE (adaptive linear neuron) networks discussed in this chapter
are similar to the perceptron, but their transfer function is linear rather than
hard-limiting. This allows their outputs to take on any value, whereas the
perceptron output is limited to either 0 or 1. Both the ADALINE and the
perceptron can only solve linearly separable problems. However, here the
LMS (least mean squares) learning rule, which is much more powerful than
the perceptron learning rule, is used. The LMS, or Widrow-Hoff, learning rule
minimizes the mean square error and thus moves the decision boundaries as
far as it can from the training patterns.

In this chapter, you design an adaptive linear system that responds to changes
in its environment as it is operating. Linear networks that are adjusted at
each time step based on new input and target vectors can find weights and
biases that minimize the network’s sum-squared error for recent input and
target vectors. Networks of this sort are often used in error cancelation, signal
processing, and control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the
name ADALINE to adaptive linear elements. The basic reference on this
subject is Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York,
Prentice-Hall, 1985.

The adaptive training of self-organizing and competitive networks is also
considered in this chapter.

Important Adaptive Functions
This chapter introduces the function adapt, which changes the weights and
biases of a network incrementally during training.

You can type help linnet to see a list of linear and adaptive network
functions, examples, and applications.
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Linear Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function, named
purelin.

The linear transfer function calculates the neuron’s output by simply
returning the value passed to it.

α = purelin(n) = purelin(Wp + b) = Wp + b

This neuron can be trained to learn an affine function of its inputs, or to find
a linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.
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Adaptive Linear Network Architecture
The ADALINE network shown below has one layer of S neurons connected to
R inputs through a matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINEs. Note
that the figure on the right defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not
much of a disadvantage, however, as single-layer linear networks are just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Single ADALINE (linearlayer)
Consider a single ADALINE with two inputs. The following figure shows
the diagram for this network.
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The weight matrixW in this case has only one row. The network output is

α = purelin(n) = purelin(Wp + b) = Wp + b

or

α = w1,1p1 + w1,2p2 + b

Like the perceptron, the ADALINE has a decision boundary that is
determined by the input vectors for which the net input n is zero. For n = 0
the equation Wp + b = 0 specifies such a decision boundary, as shown below
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area lead to an output greater than 0.
Input vectors in the lower left white area lead to an output less than 0. Thus,
the ADALINE can be used to classify objects into two categories.
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However, ADALINE can classify objects in this way only when the objects
are linearly separable. Thus, ADALINE has the same limitation as the
perceptron.

You can create a network similar to the one shown using this command:

net = linearlayer;
net = configure(net,[0;0],[0]);

The sizes of the two arguments to configure indicate that the layer is to have
two inputs and one output. Normally train does this configuration for you,
but this allows us to inspect the weights before training.

The network weights and biases are set to zero, by default. You can see the
current values using the commands:

W = net.IW{1,1}
W =

0 0

and

b = net.b{1}
b =

0

You can also assign arbitrary values to the weights and bias, such as 2 and 3
for the weights and −4 for the bias:

net.IW{1,1} = [2 3];
net.b{1} = -4;

You can simulate the ADAPLINE for a particular input vector.

p = [5; 6];
a = sim(net,p)
a =

24
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To summarize, you can create an ADALINE network with newlin, adjust its
elements as you want, and simulate it with sim. You can find more about
newlin by typing help newlin.
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Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior.

p t p t p t1 1 2 2, , , , ,{ } { } { } Q Q

Here pq is an input to the network, and tq is the corresponding target output.
As each input is applied to the network, the network output is compared
to the target. The error is calculated as the difference between the target
output and the network output. The goal is to minimize the average of the
sum of these errors.

mse
Q

e k
Q

t k k
k

Q

k

Q
= = −

= =
∑ ∑1 12

1

2

1

( ) ( ) ( ))

The LMS algorithm adjusts the weights and biases of the ADALINE so as
to minimize this mean square error.

Fortunately, the mean square error performance index for the ADALINE
network is a quadratic function. Thus, the performance index will either have
one global minimum, a weak minimum, or no minimum, depending on the
characteristics of the input vectors. Specifically, the characteristics of the
input vectors determine whether or not a unique solution exists.

You can learn more about this topic in Chapter 10 of [HDB96].
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LMS Algorithm (learnwh)
Adaptive networks will use the LMS algorithm or Widrow-Hoff learning
algorithm based on an approximate steepest descent procedure. Here again,
adaptive linear networks are trained on examples of correct behavior.

The LMS algorithm, shown here, is discussed in detail in “Linear Networks”
on page 9-18.

W(k + 1) = W(k) + 2αe(k)pT(k)

b(k + 1) = b(k) + 2αe(k)
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Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly
separable problems. It is, however, one of the most widely used neural
networks found in practical applications. Adaptive filtering is one of its major
application areas.

Tapped Delay Line
You need a new component, the tapped delay line, to make full use of the
ADALINE network. Such a delay line is shown in the next figure. The input
signal enters from the left and passes through N-1 delays. The output of the
tapped delay line (TDL) is an N-dimensional vector, made up of the input
signal at the current time, the previous input signal, etc.

Adaptive Filter
You can combine a tapped delay line with an ADALINE network to create the
adaptive filter shown in the next figure.
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The output of the filter is given by

 ( ) ( ) ( ),k purelin b w k i bi
i

R
= + = − + +

=
∑Wp 1

1

1

In digital signal processing, this network is referred to as a finite impulse
response (FIR) filter [WiSt85]. Take a look at the code used to generate and
simulate such an adaptive network.

Adaptive Filter Example
First, define a new linear network using linearlayer.
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Assume that the linear layer has a single neuron with a single input and a
tap delay of 0, 1, and 2 delays.

net = linearlayer([0 1 2]);
net = configure(net,0,0);

You can specify as many delays as you want, and can omit some values if you
like. They must be in ascending order.

You can give the various weights and the bias values with

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally, define the initial values of the outputs of the delays as

pi = {1 2};

These are ordered from left to right to correspond to the delays taken from top
to bottom in the figure. This concludes the setup of the network.

To set up the input, assume that the input scalars arrive in a sequence: first
the value 3, then the value 4, next the value 5, and finally the value 6. You
can indicate this sequence by defining the values as elements of a cell array
in curly braces.
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p = {3 4 5 6};

Now, you have a network and a sequence of inputs. Simulate the network to
see what its output is as a function of time.

[a,pf] = sim(net,p,pi)

This simulation yields an output sequence

a
[46] [70] [94] [118]

and final values for the delay outputs of

pf
[5] [6]

The example is sufficiently simple that you can check it without a calculator
to make sure that you understand the inputs, initial values of the delays, etc.

The network just defined can be trained with the function adapt to produce
a particular output sequence. Suppose, for instance, you want the network
to produce the sequence of values 10, 20, 30, 40.

t = {10 20 30 40};

You can train the defined network to do this, starting from the initial delay
conditions used above. Specify 10 passes through the input sequence with

net.adaptParam.passes = 10;

Then let the network adapt for 10 passes over the data.

for i=1:10
[net,y,E,pf,af] = adapt(net,p,t,pi);

end

This code returns the final weights, bias, and output sequence shown here.

wts = net.IW{1,1}
wts =
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0.5059 3.1053 5.7046
bias = net.b{1}
bias =

-1.5993
y
y =

[11.8558] [20.7735] [29.6679] [39.0036]

Presumably, if you ran additional passes the output sequence would have
been even closer to the desired values of 10, 20, 30, and 40.

Thus, adaptive networks can be specified, simulated, and finally trained with
adapt. However, the outstanding value of adaptive networks lies in their use
to perform a particular function, such as prediction or noise cancelation.

Prediction Example
Suppose that you want to use an adaptive filter to predict the next value of
a stationary random process, p(t). You can use the network shown in the
following figure to do this prediction.

The signal to be predicted, p(t), enters from the left into a tapped delay line.
The previous two values of p(t) are available as outputs from the tapped delay
line. The network uses adapt to change the weights on each time step so as to
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minimize the error e(t) on the far right. If this error is 0, the network output
a(t) is exactly equal to p(t), and the network has done its prediction properly.

Given the autocorrelation function of the stationary random process p(t),
you can calculate the error surface, the maximum learning rate, and the
optimum values of the weights. Commonly, of course, you do not have
detailed information about the random process, so these calculations cannot
be performed. This lack does not matter to the network. After it is initialized
and operating, the network adapts at each time step to minimize the error
and in a relatively short time is able to predict the input p(t).

Chapter 10 of [HDB96] presents this problem, goes through the analysis, and
shows the weight trajectory during training. The network finds the optimum
weights on its own without any difficulty whatsoever.

You also can try the example nnd10nc to see an adaptive noise cancelation
program example in action. This example allows you to pick a learning rate
and momentum (see “Multilayer Networks and Backpropagation Training” on
page 2-2), and shows the learning trajectory, and the original and cancelation
signals versus time.

Noise Cancelation Example
Consider a pilot in an airplane. When the pilot speaks into a microphone, the
engine noise in the cockpit combines with the voice signal. This additional
noise makes the resultant signal heard by passengers of low quality. The goal
is to obtain a signal that contains the pilot’s voice, but not the engine noise.
You can cancel the noise with an adaptive filter if you obtain a sample of the
engine noise and apply it as the input to the adaptive filter.
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As the preceding figure shows, you adaptively train the neural linear network
to predict the combined pilot/engine signal m from an engine signal n. The
engine signal n does not tell the adaptive network anything about the pilot’s
voice signal contained in m. However, the engine signal n does give the
network information it can use to predict the engine’s contribution to the
pilot/engine signal m.

The network does its best to output m adaptively. In this case, the network
can only predict the engine interference noise in the pilot/engine signal m.
The network error e is equal to m, the pilot/engine signal, minus the predicted
contaminating engine noise signal. Thus, e contains only the pilot’s voice. The
linear adaptive network adaptively learns to cancel the engine noise.

Such adaptive noise canceling generally does a better job than a classical
filter, because it subtracts from the signal rather than filtering it out the
noise of the signal m.
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Try demolin8 for an example of adaptive noise cancelation.

Multiple Neuron Adaptive Filters
You might want to use more than one neuron in an adaptive system, so you
need some additional notation. You can use a tapped delay line with S linear
neurons, as shown in the next figure.

Alternatively, you can represent this same network in abbreviated form.
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If you want to show more of the detail of the tapped delay line—and there are
not too many delays—you can use the following notation:

Here, a tapped delay line sends to the weight matrix:

• The current signal

• The previous signal

• The signal delayed before that

You could have a longer list, and some delay values could be omitted if
desired. The only requirement is that the delays must appears in increasing
order as they go from top to bottom.
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8 Advanced Topics

Parallel and GPU Computing

In this section...

“Modes of Parallelism” on page 8-2

“Distributed Computing” on page 8-3

“Single GPU Computing” on page 8-6

“Distributed GPU Computing” on page 8-9

“Parallel Time Series” on page 8-11

“Parallel Availability, Fallbacks, and Feedback” on page 8-11

Modes of Parallelism
Neural networks are inherently parallel algorithms. Multicore CPUs,
graphical processing units (GPUs), and clusters of computers with multiple
CPUs and GPUs can take advantage of this parallelism.

Parallel Computing Toolbox™, when used in conjunction with Neural
Network Toolbox, enables neural network training and simulation to take
advantage of each mode of parallelism.

For example, the following shows a standard single-threaded training and
simulation session:

[x,t] = house_dataset;
net1 = feedforwardnet(10);
net2 = train(net1,x,t);
y = net2(x);

The two steps you can parallelize in this session are the call to train and the
implicit call to sim (where the network net2 is called as a function).

In Neural Network Toolbox you can divide any data, such as x and t in the
previous example code, across samples. If x and t contain only one sample
each, there is no parallelism. But if x and t contain hundreds or thousands of
samples, parallelism can provide both speed and problem size benefits.
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Distributed Computing
Parallel Computing Toolbox allows neural network training and simulation to
run across multiple CPU cores on a single PC, or across multiple CPUs on
multiple computers on a network using MATLAB Distributed Computing
Server™.

Using multiple cores can speed calculations. Using multiple computers can
allow you to solve problems using data sets too big to fit in the RAM of a
single computer. The only limit to problem size is the total quantity of RAM
available across all computers.

To manage cluster configurations, use the Cluster Profile Manager from the
MATLAB Home tab Environment menu Parallel > Manage Cluster
Profiles.

To open a pool of MATLAB workers using the default cluster profile, which
is usually the local CPU cores, use this command:

matlabpool open

Starting matlabpool using the 'local' profile ... connected to 4 labs.

When matlabpool open runs, it displays the number of workers available in
the pool. Another way to determine the number of workers is to query the pool:

poolSize = matlabpool('size')

poolSize =

4

Now you can train and simulate the neural network with data split by
sample across all the workers. To do this, set the train and sim parameter
'useParallel' to 'yes'.

net2 = train(net1,x,t,'useParallel','yes')
y = net2(x,'useParallel','yes')

Use the 'showResources' argument to verify that the calculations ran across
multiple workers.
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net2 = train(net1,x,t,'useParallel','yes','showResources','yes')
y = net2(x,'useParallel','yes','showResources','yes')

MATLAB indicates which resources were used. For example:

Computing Resources:
Parallel Workers

Worker 1 on MyComputer, MEX on PCWIN64
Worker 2 on MyComputer, MEX on PCWIN64
Worker 3 on MyComputer, MEX on PCWIN64
Worker 4 on MyComputer, MEX on PCWIN64

When train and sim are called, they divide the input matrix or cell array
data into distributed Composite values before training and simulation. When
sim has calculated a Composite, this output is converted back to the same
matrix or cell array form before it is returned.

However, you might want to perform this data division manually if:

• The problem size is too large for the host computer. Manually defining the
elements of Composite values sequentially allows much bigger problems to
be defined.

• It is known that some workers are on computers that are faster or have
more memory than others. You can distribute the data with differing
numbers of samples per worker. This is called load balancing.

The following code sequentially creates a series of random datasets and saves
them to separate files:

for i=1:matlabpool('size')
x = rand(2,1000);
save(['inputs' num2str(i)],'x');
t = x(1,:) .* x(2,:) + 2 * (x(1,:) + x(2,:));
save(['targets' num2str(i)],'t');
clear x t

end

Because the data was defined sequentially, you can define a total dataset
larger than can fit in the host PC memory. PC memory must accommodate
only a sub-dataset at a time.
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Now you can load the datasets sequentially across parallel workers, and
train and simulate a network on the Composite data. When train or sim is
called with Composite data, the 'useParallel' argument is automatically
set to 'yes'. When using Composite data, configure the network’s input and
outputs to match one of the datasets manually using the configure function
before training.

xc = Composite;
tc = Composite;
for i=1:matlabpool('size')

data = load(['inputs' num2str(i)],'x');
xc{i} = data.x;
data = load(['targets' num2str(i)],'t');
tc{i} = data.t;
clear data

end
net2 = configure(net2,xc{1},tc{1});
net2 = train(net2,xc,tc);
yc = net2(xc);

To convert the Composite output returned by sim, you can access each of its
elements, separately if concerned about memory limitations.

for i=1:matlabpool('size')
yi = yc{i}

end

Combined the Composite value into one local value if you are not concerned
about memory limitations.

y = {yc{:}};

When load balancing, the same process happens, but, instead of each dataset
having the same number of samples (1000 in the previous example), the
numbers of samples can be adjusted to best take advantage of the memory
and speed differences of the worker host computers.

It is not required that each worker have data. If element i of a Composite
value is undefined, worker i will not be used in the computation.
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Single GPU Computing
The number of cores, size of memory, and speed efficiencies of GPU cards
are growing rapidly with each new generation. Where video games have
long benefited from improved GPU performance, these cards are now flexible
enough to perform general numerical computing tasks like training neural
networks.

For the latest GPU requirements, see the web page for Parallel Computing
Toolbox; or query MATLAB to determine whether your PC has a supported
GPU. This function returns the number of GPUs in your system:

count = gpuDeviceCount

count =

1

If the result is one or more, you can query each GPU by index for its
characteristics. This includes its name, number of multiprocessors, SIMDWidth
of each multiprocessor, and total memory.

gpu1 = gpuDevice(1)

gpu1 =

parallel.gpu.CUDADevice handle
Package: parallel.gpu

Properties:
Name: 'GeForce GTX 470'

Index: 1
ComputeCapability: '2.0'

SupportsDouble: 1
DriverVersion: 4.1000

MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152

MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [65535 65535 1]

SIMDWidth: 32
TotalMemory: 1.3422e+09
FreeMemory: 1.1056e+09
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MultiprocessorCount: 14
ClockRateKHz: 1215000
ComputeMode: 'Default'

GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1

CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

You can calculate how many cores the this GPU has, which in this case
is 448 cores.

gpuCores1 = gpu1.MultiprocessorCount * gpu1.SIMDWidth

gpuCores1 =

448

The simplest way to take advantage of the GPU is to specify for train and sim
with the parameter argument 'useGPU' set to 'yes' or 'no' (the default).

net2 = train(net1,x,t,'useGPU','yes')
y = net2(x,'useGPU','yes')

If net1 has the default training function trainlm, you see a warning that GPU
calculations do not support Jacobian training, only gradient training. So the
training function is automatically changed to the gradient training function
trainscg. To avoid the notice, you can make this change before training:

net1.trainFcn = 'trainscg';

To verify that the training and simulation occur on the GPU card, request
that the computer resources be shown:

net2 = train(net1,x,t,'useGPU','yes','showResources','yes')
y = net2(x,'useGPU','yes','showResources','yes')

Each of the above lines of code outputs the following resources summary:

Computing Resources:
GPU device 1, GeForce GTX 470
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When a GPU is used in the previous examples, train and sim take MATLAB
matrices or cell arrays and convert them to GPU arrays before training and
simulation. sim then takes the GPU array result and converts it back to a
matrix or cell array before returning it.

An alternative is to supply the data arguments as values already converted to
GPU arrays. The Parallel Computing Toolbox command for creating a GPU
array from a matrix is named accordingly.

xg = gpuArray(x)

To get the value back from the GPU use gather.

x2 = gather(xg)

However, for neural network calculations on a GPU to be efficient, matrices
need to be transposed and the columns padded so that the first element in
each column aligns properly in the GPU memory. Do this with the function
nndata2gpu.

xg = nndata2gpu(x);
tg = nndata2gpu(t);

Now you can train, simulate the network, and convert the returned GPU array
back to MATLAB with the complement function gpu2nndata. When training
with gpuArray data, the network’s input and outputs must be configured
manually with regular matrices using the configure function before training.

net2 = configure(net1,x,t);
net2 = train(net2,xg,tg);
yg = net2(xg);
y = gpu2nndata(yg);

On GPUs and other hardware where you might want to deploy your neural
networks, it is often the case that the exponential function exp is not
implemented with hardware, but with a software library. This can slow
down neural networks that use the tansig sigmoid transfer function. An
alternative function is the Elliot sigmoid function whose expression does not
include a call to any higher order functions:

(equation) a = n / (1 + abs(n))
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Before training, the network’s tansig layers can be converted to elliotsig
layers as follows:

for i=1:net.numLayers
if strcmp(net.layers{i}.transferFcn,'tansig')

net.layers{i}.transferFcn = 'elliotsig';
end

end

Now training and simulation might be faster on the GPU and simpler
deployment hardware.

Distributed GPU Computing
Distributed and GPU computing can be combined to run calculations across
multiple GPUs and/or CPUs on a single PC or clusters of PCs with MATLAB
Distributed Computing Server.

The simplest way to do this is to direct train and sim to do so, after opening
matlabpool with the cluster profile you want. The 'useResources' option is
especially recommended in this case, to verify that the expected hardware is
being employed.

net2 = train(net1,x,t,'useParallel','yes','useGPU','yes','showResources','yes')

y = net2(x,'useParallel','yes','useGPU','yes','showResources','yes')

The above lines of code use all available workers. One worker for each unique
GPU employs that GPU, while other workers operate as CPUs. In some cases,
it might be faster to use only GPUs. For instance, if a single computer has
three GPUs and four workers each, the three workers that are accelerated by
the three GPUs might be speed limited by the fourth CPU worker. In these
cases, you can direct train and sim to use only workers with unique GPUs.

net2 = train(net1,x,t,'useParallel','yes','useGPU','only','showResources','yes')

y = net2(x,'useParallel','yes','useGPU','only','showResources','yes')

As with simple distributed computing, distributed GPU computing can benefit
from manually created Composite values. Defining the Composite values
yourself lets you indicate which workers to use, how many samples to assign
to each worker, and which workers use GPUs.

8-9



8 Advanced Topics

For instance, if you have four workers and only three GPUs, you can define
larger datasets for the GPU workers. Here, a random dataset is created with
different sample loads per Composite element:

numSamples = [1000 1000 1000 300];
xc = Composite;
tc = Composite;
for i=1:4

xi = rand(2,numSamples(i));
ti = xi(1,:).^2 + 3*xi(2,:);
xc{i} = xi;
tc{i} = ti;

end

You can now specify that train and sim use the three GPUs available:

net2 = configure(net1,xc{1},tc{1});
net2 = train(net2,xc,tc,'useGPU','yes','showResources','yes');
yc = net2(xc,'showResources','yes');

To ensure that the GPUs get used by the first three workers, you can
manually indicate that by converting each worker’s Composite elements to
gpuArrays. Each worker performs this transformation within a parallel
executing spmd block.

spmd
if labindex <= 3

xc = nndata2gpu(xc);
tc = nndata2gpu(tc);

end
end

Now the data specifies when to use GPUs, so you do not need to tell train
and sim to do so.

net2 = configure(net1,xc{1},tc{1});
net2 = train(net2,xc,tc,'showResources','yes');
yc = net2(xc,'showResources','yes');

Ensure that each GPU is used by only one worker, so that the computations
are most efficient. If multiple workers assign gpuArray data on the same
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GPU, the computation will still work but will be slower, because the GPU will
operate on the multiple workers’ data sequentially.

Parallel Time Series
For time series networks, simply use cell array values for x and t, and
optionally include initial input delay states xi and initial layer delay states
ai, as required.

net2 = train(net1,x,t,xi,ai,'useGPU','yes')
y = net2(x,xi,ai,,'useParallel','yes','useGPU','yes')

net2 = train(net1,x,t,xi,ai,'useParallel','yes')
y = net2(x,xi,ai,,'useParallel','yes','useGPU','only')

net2 = train(net1,x,t,xi,ai,'useParallel','yes','useGPU','only')
y = net2(x,xi,ai,,'useParallel','yes','useGPU','only')

Note that parallelism happens across samples, or in the case of time series
across different series. However, if the network has only input delays, with
no layer delays, the delayed inputs can be precalculated so that for the
purposes of computation, the time steps become different samples and can
be parallelized. This is the case for networks such as timedelaynet and
open-loop versions of narxnet and narnet. If a network has layer delays, then
time cannot be “flattened” for purposes of computation, and so single series
data cannot be parallelized. This is the case for networks such as layrecnet
and closed-loop versions of narxnet and narnet. However, if the data consists
of multiple sequences, it can be parallelized across the separate sequences.

Parallel Availability, Fallbacks, and Feedback
As mentioned previously, you can query MATLAB to discover the current
parallel resources that are available.

To see what GPUs are available on the host computer:

gpuCount = gpuDeviceCount
for i=1:gpuCount

gpuDevice(i)
end
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To see how many parallel workers are running in the current MATLAB pool:

poolSize = matlabpool('size')

To see the GPUs available across a MATLAB pool running on a PC cluster
using MATLAB Distributed Computing Server:

spmd
worker.index = labindex;
worker.name = system('hostname');
worker.gpuCount = gpuDeviceCount;
try

worker.gpuInfo = gpuDevice;
catch

worker.gpuInfo = [];
end
worker

end

When 'useParallel' or 'useGPU' are set to 'yes', but parallel or GPU
workers are unavailabl, the convention is that when resources are requested,
they are used if available. The computation is performed without error even if
they are not. This process of falling back from requested resources to actual
resources happens as follows:

• If 'useParallel' is 'yes' but Parallel Computing Toolbox is unavailable,
or a MATLAB pool is not open, then computation reverts to single-threaded
MATLAB.

• If 'useGPU' is 'yes' but the gpuDevice for the current MATLAB session is
unassigned or not supported, then computation reverts to the CPU.

• If 'useParallel' and 'useGPU' are 'yes', then each worker with a unique
GPU uses that GPU, and other workers revert to CPU.

• If 'useParallel' is 'yes' and 'useGPU' is 'only', then workers with
unique GPUs are used. Other workers are not used, unless no workers
have GPUs. In the case with no GPUs, all workers use CPUs.

When unsure about what hardware is actually being employed, check
gpuDeviceCount, gpuDevice, and matlabpool('size') to ensure the desired
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hardware is available, and call train and sim with 'showResources' set to
'yes' to verify what resources were actually used.
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Speed and Memory Optimizations

In this section...

“Memory Reduction” on page 8-14

“Fast Elliot Sigmoid” on page 8-14

Memory Reduction
Depending on the particular neural network, simulation and gradient
calculations can occur in MATLAB or MEX. MEX is more memory efficient,
but MATLAB can be made more memory efficient in exchange for time.

To determine whether MATLAB or MEX is being used, use the
'showResources' option, as shown in this general form of the syntax:

net2 = train(net1,x,t,'showResources','yes')

If MATLAB is being used and memory limitations are a problem, the amount
of temporary storage needed can be reduced by a factor of N, in exchange
for performing the computations N times sequentially on each of N subsets
of the data.

net2 = train(net1,x,t,'reduction',N);

This is called memory reduction.

Fast Elliot Sigmoid
Some simple computing hardware might not support the exponential function
directly, and software implementations can be slow. The Elliot sigmoid
elliotsig function performs the same role as the symmetric sigmoid tansig
function, but avoids the exponential function.

Here is a plot of the Elliot sigmoid:

n = -10:0.01:10;
a = elliotsig(n);
plot(n,a)
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Next, elliotsig is compared with tansig.

a2 = tansig(n);
h = plot(n,a,n,a2);
legend(h,'elliotsig','tansig','Location','NorthWest')

To train a neural network using elliotsig instead of tansig, transform the
network’s transfer functions:

[x,t] = house_dataset;
net = feedforwardnet;
view(net)
net.layers{1}.transferFcn = 'elliotsig';
view(net)
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net = train(net,x,t);
y = net(x)

Here, the times to execute elliotsig and tansig are compared. elliotsig
is approximately four times faster on the test system.

n = rand(1000,1000);
tic,for i=1:100,a=tansig(n); end, tansigTime = toc;
tic,for i=1:100,a=elliotsig(n); end, elliotTime = toc;
speedup = tansigTime / elliotTime

speedup =

4.1406

However, while simulation is faster with elliotsig, training is not
guaranteed to be faster, due to the different shapes of the two transfer
functions. Here, 10 networks are each trained for tansig and elliotsig, but
training times vary significantly even on the same problem with the same
network.

[x,t] = house_dataset;
tansigNet = feedforwardnet;
tansigNet.trainParam.showWindow = false;
elliotNet = tansigNet;
elliotNet.layers{1}.transferFcn = 'elliotsig';
for i=1:10, tic, net = train(tansigNet,x,t); tansigTime = toc, end
for i=1:10, tic, net = train(elliotNet,x,t), elliotTime = toc, end
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Multilayer Training Speed and Memory
It is very difficult to know which training algorithm will be the fastest for
a given problem. It depends on many factors, including the complexity of
the problem, the number of data points in the training set, the number of
weights and biases in the network, the error goal, and whether the network
is being used for pattern recognition (discriminant analysis) or function
approximation (regression). This section compares the various training
algorithms. Feedforward networks are trained on six different problems.
Three of the problems fall in the pattern recognition category and the three
others fall in the function approximation category. Two of the problems
are simple “toy” problems, while the other four are “real world” problems.
Networks with a variety of different architectures and complexities are used,
and the networks are trained to a variety of different accuracy levels.

The following table lists the algorithms that are tested and the acronyms
used to identify them.

Acronym Algorithm Description

LM trainlm Levenberg-Marquardt

BFG trainbfg BFGS Quasi-Newton

RP trainrp Resilient Backpropagation

SCG trainscg Scaled Conjugate Gradient

CGB traincgb Conjugate Gradient with Powell/Beale
Restarts

CGF traincgf Fletcher-Powell Conjugate Gradient

CGP traincgp Polak-Ribiére Conjugate Gradient

OSS trainoss One Step Secant

GDX traingdx Variable Learning Rate Backpropagation

The following table lists the six benchmark problems and some characteristics
of the networks, training processes, and computers used.
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Problem Title Problem Type
Network
Structure

Error
Goal Computer

SIN Function
approximation

1-5-1 0.002 Sun Sparc 2

PARITY Pattern recognition 3-10-10-1 0.001 Sun Sparc 2

ENGINE Function
approximation

2-30-2 0.005 Sun Enterprise 4000

CANCER Pattern recognition 9-5-5-2 0.012 Sun Sparc 2

CHOLESTEROL Function
approximation

21-15-3 0.027 Sun Sparc 20

DIABETES Pattern recognition 8-15-15-2 0.05 Sun Sparc 20

SIN Data Set
The first benchmark data set is a simple function approximation problem.
A 1-5-1 network, with tansig transfer functions in the hidden layer and
a linear transfer function in the output layer, is used to approximate a
single period of a sine wave. The following table summarizes the results of
training the network using nine different training algorithms. Each entry
in the table represents 30 different trials, where different random initial
weights are used in each trial. In each case, the network is trained until the
squared error is less than 0.002. The fastest algorithm for this problem is
the Levenberg-Marquardt algorithm. On the average, it is over four times
faster than the next fastest algorithm. This is the type of problem for which
the LM algorithm is best suited—a function approximation problem where
the network has fewer than one hundred weights and the approximation
must be very accurate.

Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

LM 1.14 1.00 0.65 1.83 0.38

BFG 5.22 4.58 3.17 14.38 2.08

RP 5.67 4.97 2.66 17.24 3.72
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Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

SCG 6.09 5.34 3.18 23.64 3.81

CGB 6.61 5.80 2.99 23.65 3.67

CGF 7.86 6.89 3.57 31.23 4.76

CGP 8.24 7.23 4.07 32.32 5.03

OSS 9.64 8.46 3.97 59.63 9.79

GDX 27.69 24.29 17.21 258.15 43.65

The performance of the various algorithms can be affected by the accuracy
required of the approximation. This is shown in the following figure, which
plots the mean square error versus execution time (averaged over the 30
trials) for several representative algorithms. Here you can see that the error
in the LM algorithm decreases much more rapidly with time than the other
algorithms shown.

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
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error convergence goal. Here you can see that as the error goal is reduced, the
improvement provided by the LM algorithm becomes more pronounced. Some
algorithms perform better as the error goal is reduced (LM and BFG), and
other algorithms degrade as the error goal is reduced (OSS and GDX).

PARITY Data Set
The second benchmark problem is a simple pattern recognition
problem—detect the parity of a 3-bit number. If the number of ones in the
input pattern is odd, then the network should output a 1; otherwise, it should
output a -1. The network used for this problem is a 3-10-10-1 network with
tansig neurons in each layer. The following table summarizes the results of
training this network with the nine different algorithms. Each entry in the
table represents 30 different trials, where different random initial weights
are used in each trial. In each case, the network is trained until the squared
error is less than 0.001. The fastest algorithm for this problem is the resilient
backpropagation algorithm, although the conjugate gradient algorithms (in
particular, the scaled conjugate gradient algorithm) are almost as fast. Notice
that the LM algorithm does not perform well on this problem. In general, the
LM algorithm does not perform as well on pattern recognition problems as
it does on function approximation problems. The LM algorithm is designed
for least squares problems that are approximately linear. Because the output

8-20



Multilayer Training Speed and Memory

neurons in pattern recognition problems are generally saturated, you will
not be operating in the linear region.

Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

RP 3.73 1.00 2.35 6.89 1.26

SCG 4.09 1.10 2.36 7.48 1.56

CGP 5.13 1.38 3.50 8.73 1.05

CGB 5.30 1.42 3.91 11.59 1.35

CGF 6.62 1.77 3.96 28.05 4.32

OSS 8.00 2.14 5.06 14.41 1.92

LM 13.07 3.50 6.48 23.78 4.96

BFG 19.68 5.28 14.19 26.64 2.85

GDX 27.07 7.26 25.21 28.52 0.86

As with function approximation problems, the performance of the various
algorithms can be affected by the accuracy required of the network. This
is shown in the following figure, which plots the mean square error versus
execution time for some typical algorithms. The LM algorithm converges
rapidly after some point, but only after the other algorithms have already
converged.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
error convergence goal. Again you can see that some algorithms degrade as
the error goal is reduced (OSS and BFG).
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ENGINE Data Set
The third benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The data is obtained from the operation of an
engine. The inputs to the network are engine speed and fueling levels and
the network outputs are torque and emission levels. The network used for
this problem is a 2-30-2 network with tansig neurons in the hidden layer
and linear neurons in the output layer. The following table summarizes the
results of training this network with the nine different algorithms. Each entry
in the table represents 30 different trials (10 trials for RP and GDX because
of time constraints), where different random initial weights are used in each
trial. In each case, the network is trained until the squared error is less than
0.005. The fastest algorithm for this problem is the LM algorithm, although
the BFGS quasi-Newton algorithm and the conjugate gradient algorithms
(the scaled conjugate gradient algorithm in particular) are almost as fast.
Although this is a function approximation problem, the LM algorithm is not
as clearly superior as it was on the SIN data set. In this case, the number
of weights and biases in the network is much larger than the one used on
the SIN problem (152 versus 16), and the advantages of the LM algorithm
decrease as the number of network parameters increases.

Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

LM 18.45 1.00 12.01 30.03 4.27

BFG 27.12 1.47 16.42 47.36 5.95

SCG 36.02 1.95 19.39 52.45 7.78

CGF 37.93 2.06 18.89 50.34 6.12

CGB 39.93 2.16 23.33 55.42 7.50

CGP 44.30 2.40 24.99 71.55 9.89

OSS 48.71 2.64 23.51 80.90 12.33

RP 65.91 3.57 31.83 134.31 34.24

GDX 188.50 10.22 81.59 279.90 66.67
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The following figure plots the mean square error versus execution time for
some typical algorithms. The performance of the LM algorithm improves over
time relative to the other algorithms.

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
error convergence goal. Again you can see that some algorithms degrade as
the error goal is reduced (GDX and RP), while the LM algorithm improves.

8-24



Multilayer Training Speed and Memory

CANCER Data Set
The fourth benchmark problem is a realistic pattern recognition (or nonlinear
discriminant analysis) problem. The objective of the network is to classify
a tumor as either benign or malignant based on cell descriptions gathered
by microscopic examination. Input attributes include clump thickness,
uniformity of cell size and cell shape, the amount of marginal adhesion, and
the frequency of bare nuclei. The data was obtained from the University of
Wisconsin Hospitals, Madison, from Dr. William H. Wolberg. The network
used for this problem is a 9-5-5-2 network with tansig neurons in all layers.
The following table summarizes the results of training this network with the
nine different algorithms. Each entry in the table represents 30 different
trials, where different random initial weights are used in each trial. In each
case, the network is trained until the squared error is less than 0.012. A few
runs failed to converge for some of the algorithms, so only the top 75% of the
runs from each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence, and the LM algorithm is also reasonably fast. As with
the parity data set, the LM algorithm does not perform as well on pattern
recognition problems as it does on function approximation problems.
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Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

CGB 80.27 1.00 55.07 102.31 13.17

RP 83.41 1.04 59.51 109.39 13.44

SCG 86.58 1.08 41.21 112.19 18.25

CGP 87.70 1.09 56.35 116.37 18.03

CGF 110.05 1.37 63.33 171.53 30.13

LM 110.33 1.37 58.94 201.07 38.20

BFG 209.60 2.61 118.92 318.18 58.44

GDX 313.22 3.90 166.48 446.43 75.44

OSS 463.87 5.78 250.62 599.99 97.35

The following figure plots the mean square error versus execution time for
some typical algorithms. For this problem there is not as much variation in
performance as in previous problems.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
error convergence goal. Again you can see that some algorithms degrade as
the error goal is reduced (OSS and BFG) while the LM algorithm improves. It
is typical of the LM algorithm on any problem that its performance improves
relative to other algorithms as the error goal is reduced.

CHOLESTEROL Data Set
The fifth benchmark problem is a realistic function approximation (or
nonlinear regression) problem. The objective of the network is to predict
cholesterol levels (ldl, hdl, and vldl) based on measurements of 21 spectral
components. The data was obtained from Dr. Neil Purdie, Department of
Chemistry, Oklahoma State University [PuLu92]. The network used for this
problem is a 21-15-3 network with tansig neurons in the hidden layers and
linear neurons in the output layer. The following table summarizes the
results of training this network with the nine different algorithms. Each
entry in the table represents 20 different trials (10 trials for RP and GDX),
where different random initial weights are used in each trial. In each case,
the network is trained until the squared error is less than 0.027.

The scaled conjugate gradient algorithm has the best performance on this
problem, although all the conjugate gradient algorithms perform well. The
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LM algorithm does not perform as well on this function approximation
problem as it did on the other two. That is because the number of weights
and biases in the network has increased again (378 versus 152 versus 16).
As the number of parameters increases, the computation required in the LM
algorithm increases geometrically.

Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

SCG 99.73 1.00 83.10 113.40 9.93

CGP 121.54 1.22 101.76 162.49 16.34

CGB 124.06 1.2 107.64 146.90 14.62

CGF 136.04 1.36 106.46 167.28 17.67

LM 261.50 2.62 103.52 398.45 102.06

OSS 268.55 2.69 197.84 372.99 56.79

BFG 550.92 5.52 471.61 676.39 46.59

RP 1519.00 15.23 581.17 2256.10 557.34

GDX 3169.50 31.78 2514.90 4168.20 610.52

The following figure plots the mean square error versus execution time
for some typical algorithms. For this problem, you can see that the LM
algorithm is able to drive the mean square error to a lower level than the
other algorithms. The SCG and RP algorithms provide the fastest initial
convergence.
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The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
error convergence goal. You can see that the LM and BFG algorithms improve
relative to the other algorithms as the error goal is reduced.
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DIABETES Data Set
The sixth benchmark problem is a pattern recognition problem. The objective
of the network is to decide whether an individual has diabetes, based on
personal data (age, number of times pregnant) and the results of medical
examinations (e.g., blood pressure, body mass index, result of glucose
tolerance test, etc.). The data was obtained from the University of California,
Irvine, machine learning data base. The network used for this problem is
an 8-15-15-2 network with tansig neurons in all layers. The following table
summarizes the results of training this network with the nine different
algorithms. Each entry in the table represents 10 different trials, where
different random initial weights are used in each trial. In each case, the
network is trained until the squared error is less than 0.05.

The conjugate gradient algorithms and resilient backpropagation all provide
fast convergence. The results on this problem are consistent with the other
pattern recognition problems considered. The RP algorithm works well on all
the pattern recognition problems. This is reasonable, because that algorithm
was designed to overcome the difficulties caused by training with sigmoid
functions, which have very small slopes when operating far from the center
point. For pattern recognition problems, you use sigmoid transfer functions
in the output layer, and you want the network to operate at the tails of the
sigmoid function.

Algorithm
Mean
Time (s) Ratio

Min.
Time (s)

Max.
Time (s) Std. (s)

RP 323.90 1.00 187.43 576.90 111.37

SCG 390.53 1.21 267.99 487.17 75.07

CGB 394.67 1.22 312.25 558.21 85.38

CGP 415.90 1.28 320.62 614.62 94.77

OSS 784.00 2.42 706.89 936.52 76.37

CGF 784.50 2.42 629.42 1082.20 144.63

LM 1028.10 3.17 802.01 1269.50 166.31

BFG 1821.00 5.62 1415.80 3254.50 546.36

GDX 7687.00 23.73 5169.20 10350.00 2015.00
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The following figure plots the mean square error versus execution time for
some typical algorithms. As with other problems, you see that the SCG and
RP have fast initial convergence, while the LM algorithm is able to provide
smaller final error.

The relationship between the algorithms is further illustrated in the following
figure, which plots the time required to converge versus the mean square
error convergence goal. In this case, you can see that the BFG algorithm
degrades as the error goal is reduced, while the LM algorithm improves. The
RP algorithm is best, except at the smallest error goal, where SCG is better.
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Summary
There are several algorithm characteristics that can be deduced from the
experiments described. In general, on function approximation problems, for
networks that contain up to a few hundred weights, the Levenberg-Marquardt
algorithm will have the fastest convergence. This advantage is especially
noticeable if very accurate training is required. In many cases, trainlm is
able to obtain lower mean square errors than any of the other algorithms
tested. However, as the number of weights in the network increases, the
advantage of trainlm decreases. In addition, trainlm performance is
relatively poor on pattern recognition problems. The storage requirements
of trainlm are larger than the other algorithms tested. By adjusting the
mem_reduc parameter, discussed earlier, the storage requirements can be
reduced, but at the cost of increased execution time.

The trainrp function is the fastest algorithm on pattern recognition
problems. However, it does not perform well on function approximation
problems. Its performance also degrades as the error goal is reduced. The
memory requirements for this algorithm are relatively small in comparison
to the other algorithms considered.

The conjugate gradient algorithms, in particular trainscg, seem to perform
well over a wide variety of problems, particularly for networks with a large
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number of weights. The SCG algorithm is almost as fast as the LM algorithm
on function approximation problems (faster for large networks) and is almost
as fast as trainrp on pattern recognition problems. Its performance does
not degrade as quickly as trainrp performance does when the error is
reduced. The conjugate gradient algorithms have relatively modest memory
requirements.

The performance of trainbfg is similar to that of trainlm. It does not require
as much storage as trainlm, but the computation required does increase
geometrically with the size of the network, because the equivalent of a matrix
inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than
the other methods, and has about the same storage requirements as trainrp,
but it can still be useful for some problems. There are certain situations in
which it is better to converge more slowly. For example, when using early
stopping you can have inconsistent results if you use an algorithm that
converges too quickly. You might overshoot the point at which the error on
the validation set is minimized.
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Improving Generalization
One of the problems that occur during neural network training is called
overfitting. The error on the training set is driven to a very small value, but
when new data is presented to the network the error is large. The network
has memorized the training examples, but it has not learned to generalize to
new situations.

The following figure shows the response of a 1-20-1 neural network that
has been trained to approximate a noisy sine function. The underlying sine
function is shown by the dotted line, the noisy measurements are given by the
+ symbols, and the neural network response is given by the solid line. Clearly
this network has overfitted the data and will not generalize well.

One method for improving network generalization is to use a network that is
just large enough to provide an adequate fit. The larger network you use, the
more complex the functions the network can create. If you use a small enough
network, it will not have enough power to overfit the data. Run the Neural
Network Design example nnd11gn [HDB96] to investigate how reducing the
size of a network can prevent overfitting.
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Unfortunately, it is difficult to know beforehand how large a network should
be for a specific application. There are two other methods for improving
generalization that are implemented in Neural Network Toolbox software:
regularization and early stopping. The next sections describe these two
techniques and the routines to implement them.

Note that if the number of parameters in the network is much smaller than
the total number of points in the training set, then there is little or no chance
of overfitting. If you can easily collect more data and increase the size of the
training set, then there is no need to worry about the following techniques to
prevent overfitting. The rest of this section only applies to those situations in
which you want to make the most of a limited supply of data.

Early Stopping
The default method for improving generalization is called early stopping. This
technique is automatically provided for all of the supervised network creation
functions, including the backpropagation network creation functions such
as feedforwardnet.

In this technique the available data is divided into three subsets. The
first subset is the training set, which is used for computing the gradient
and updating the network weights and biases. The second subset is the
validation set. The error on the validation set is monitored during the
training process. The validation error normally decreases during the initial
phase of training, as does the training set error. However, when the network
begins to overfit the data, the error on the validation set typically begins to
rise. When the validation error increases for a specified number of iterations
(net.trainParam.max_fail), the training is stopped, and the weights and
biases at the minimum of the validation error are returned.

The test set error is not used during training, but it is used to compare
different models. It is also useful to plot the test set error during the training
process. If the error in the test set reaches a minimum at a significantly
different iteration number than the validation set error, this might indicate a
poor division of the data set.

There are four functions provided for dividing data into training, validation
and test sets. They are dividerand (the default), divideblock, divideint,
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and divideind. You can access or change the division function for your
network with this property:

net.divideFcn

Each of these functions takes parameters that customize its behavior. These
values are stored and can be changed with the following network property:

net.divideParam

Index Data Division (divideind)
Create a simple test problem. For the full data set, generate a noisy sine wave
with 201 input points ranging from −1 to 1 at steps of 0.01:

p = [-1:0.01:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Divide the data by index so that successive samples are assigned to the
training set, validation set, and test set successively:

trainInd = 1:3:201
valInd = 2:3:201;
testInd = 3:3:201;
[trainP,valP,testP] = divideind(p,trainInd,valInd,testInd);
[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Random Data Division (dividerand)
You can divide the input data randomly so that 60% of the samples are
assigned to the training set, 20% to the validation set, and 20% to the test
set, as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = dividerand(p);

This function not only divides the input data, but also returns indices so that
you can divide the target data accordingly using divideind:

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);
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Block Data Division (divideblock)
You can also divide the input data randomly such that the first 60% of the
samples are assigned to the training set, the next 20% to the validation set,
and the last 20% to the test set, as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideblock(p);

Divide the target data accordingly using divideind:

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Interleaved Data Division (divideint)
Another way to divide the input data is to cycle samples between the training
set, validation set, and test set according to percentages. You can interleave
60% of the samples to the training set, 20% to the validation set and 20% to
the test set as follows:

[trainP,valP,testP,trainInd,valInd,testInd] = divideint(p);

Divide the target data accordingly using divideind.

[trainT,valT,testT] = divideind(t,trainInd,valInd,testInd);

Regularization
Another method for improving generalization is called regularization. This
involves modifying the performance function, which is normally chosen to be
the sum of squares of the network errors on the training set. The next section
explains how the performance function can be modified, and the following
section describes a routine that automatically sets the optimal performance
function to achieve the best generalization.

Modified Performance Function
The typical performance function used for training feedforward neural
networks is the mean sum of squares of the network errors.
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It is possible to improve generalization if you modify the performance function
by adding a term that consists of the mean of the sum of squares of the
network weights and biases msereg = γmse + (1 − γ)msw,

where γ is the performance ratio, and

msw
n

wj
j

n
=

=
∑1 2

1

Using this performance function causes the network to have smaller weights
and biases, and this forces the network response to be smoother and less
likely to overfit.

The following code reinitializes the previous network and retrains it using
the BFGS algorithm with the regularized performance function. Here the
performance ratio is set to 0.5, which gives equal weight to the mean square
errors and the mean square weights. (Data division is cancelled by setting
net.divideFcn so that the effects of msereg are isolated from early stopping.)

[x,t] = simplefit_dataset;
net = feedforwardnet(10,'trainbfg');
net.divideFcn = '';
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
net.performParam.regularization = 0.5;
net = train(net,x,t);

The problem with regularization is that it is difficult to determine the
optimum value for the performance ratio parameter. If you make this
parameter too large, you might get overfitting. If the ratio is too small, the
network does not adequately fit the training data. The next section describes
a routine that automatically sets the regularization parameters.

Automated Regularization (trainbr)
It is desirable to determine the optimal regularization parameters in an
automated fashion. One approach to this process is the Bayesian framework
of David MacKay [MacK92]. In this framework, the weights and biases of the
network are assumed to be random variables with specified distributions. The
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regularization parameters are related to the unknown variances associated
with these distributions. You can then estimate these parameters using
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this
user guide. A detailed discussion of the use of Bayesian regularization, in
combination with Levenberg-Marquardt training, can be found in [FoHa97].

Bayesian regularization has been implemented in the function trainbr.
The following code shows how you can train a 1-20-1 network using
this function to approximate the noisy sine wave shown in the figure in
“Improving Generalization” on page 8-34. (Data division is cancelled by
setting net.divideFcn so that the effects of trainbr are isolated from early
stopping.)

x = -1:0.05:1;
t = sin(2*pi*x) + 0.1*randn(size(x));
net = feedforwardnet(20,'trainbr');
net = train(net,x,t);

One feature of this algorithm is that it provides a measure of how many
network parameters (weights and biases) are being effectively used by the
network. In this case, the final trained network uses approximately 12
parameters (indicated by #Par in the printout) out of the 61 total weights
and biases in the 1-20-1 network. This effective number of parameters
should remain approximately the same, no matter how large the number of
parameters in the network becomes. (This assumes that the network has been
trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and
targets are scaled so that they fall approximately in the range [−1,1]. That is
the case for the test problem here. If your inputs and targets do not fall in this
range, you can use the function mapminmax or mapstd to perform the scaling,
as described in “Preprocessing and Postprocessing” on page 2-8. Networks
created with feedforwardnet include mapminmax as an input and output
processing function by default.

The following figure shows the response of the trained network. In contrast
to the previous figure, in which a 1-20-1 network overfits the data, here you
see that the network response is very close to the underlying sine function
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(dotted line), and, therefore, the network will generalize well to new inputs.
You could have tried an even larger network, but the network response would
never overfit the data. This eliminates the guesswork required in determining
the optimum network size.

When using trainbr, it is important to let the algorithm run until the
effective number of parameters has converged. The training might stop with
the message "Maximum MU reached." This is typical, and is a good indication
that the algorithm has truly converged. You can also tell that the algorithm
has converged if the sum squared error (SSE) and sum squared weights (SSW)
are relatively constant over several iterations. When this occurs you might
want to click the Stop Training button in the training window.

Summary and Discussion of Early Stopping and
Regularization
Early stopping and regularization can ensure network generalization when
you apply them properly.

For early stopping, you must be careful not to use an algorithm that converges
too rapidly. If you are using a fast algorithm (like trainlm), set the training
parameters so that the convergence is relatively slow. For example, set mu
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to a relatively large value, such as 1, and set mu_dec and mu_inc to values
close to 1, such as 0.8 and 1.5, respectively. The training functions trainscg
and trainbr usually work well with early stopping.

With early stopping, the choice of the validation set is also important. The
validation set should be representative of all points in the training set.

When you use Bayesian regularization, it is important to train the network
until it reaches convergence. The sum-squared error, the sum-squared
weights, and the effective number of parameters should reach constant values
when the network has converged.

With both early stopping and regularization, it is a good idea to train the
network starting from several different initial conditions. It is possible for
either method to fail in certain circumstances. By testing several different
initial conditions, you can verify robust network performance.

When the data set is small and you are training function approximation
networks, Bayesian regularization provides better generalization performance
than early stopping. This is because Bayesian regularization does not require
that a validation data set be separate from the training data set; it uses all
the data.

To provide some insight into the performance of the algorithms, both early
stopping and Bayesian regularization were tested on several benchmark data
sets, which are listed in the following table.

Data Set Title
Number
of Points Network Description

BALL 67 2-10-1 Dual-sensor calibration for a ball position
measurement

SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at
5% level

SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at
2% level

ENGINE (ALL) 1199 2-30-2 Engine sensor—full data set

ENGINE (1/4) 300 2-30-2 Engine sensor—1/4 of data set
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Data Set Title
Number
of Points Network Description

CHOLEST (ALL) 264 5-15-3 Cholesterol measurement—full data set

CHOLEST (1/2) 132 5-15-3 Cholesterol measurement—1/2 data set

These data sets are of various sizes, with different numbers of inputs and
targets. With two of the data sets the networks were trained once using all
the data and then retrained using only a fraction of the data. This illustrates
how the advantage of Bayesian regularization becomes more noticeable when
the data sets are smaller. All the data sets are obtained from physical systems
except for the SINE data sets. These two were artificially created by adding
various levels of noise to a single cycle of a sine wave. The performance of the
algorithms on these two data sets illustrates the effect of noise.

The following table summarizes the performance of early stopping (ES) and
Bayesian regularization (BR) on the seven test sets. (The trainscg algorithm
was used for the early stopping tests. Other algorithms provide similar
performance.)

Mean Squared Test Set Error

Method Ball Engine
(All)

Engine
(1/4)

Choles
(All)

Choles
(1/2)

Sine
(5%
N)

Sine
(2% N)

ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1

BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3

ES/BR 92 5 4 1 1.5 5.7 21

You can see that Bayesian regularization performs better than early stopping
in most cases. The performance improvement is most noticeable when the
data set is small, or if there is little noise in the data set. The BALL data set,
for example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often
better than early stopping, this is not always the case. In addition, the form
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of Bayesian regularization implemented in the toolbox does not perform as
well on pattern recognition problems as it does on function approximation
problems. This is because the approximation to the Hessian that is used in the
Levenberg-Marquardt algorithm is not as accurate when the network output
is saturated, as would be the case in pattern recognition problems. Another
disadvantage of the Bayesian regularization method is that it generally takes
longer to converge than early stopping.

Posttraining Analysis (regression)
The performance of a trained network can be measured to some extent by
the errors on the training, validation, and test sets, but it is often useful to
investigate the network response in more detail. One option is to perform a
regression analysis between the network response and the corresponding
targets. The routine regression is designed to perform this analysis.

The following commands illustrate how to perform a regression analysis on a
network trained.

x = [-1:.05:1];
t = sin(2*pi*x)+0.1*randn(size(x));
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
[r,m,b] = regression(t,y)

r =
0.9935

m =
0.9874

b =
-0.0067

The network output and the corresponding targets are passed to regression.
It returns three parameters. The first two, m and b, correspond to the slope
and the y-intercept of the best linear regression relating targets to network
outputs. If there were a perfect fit (outputs exactly equal to targets), the slope
would be 1, and the y-intercept would be 0. In this example, you can see that
the numbers are very close. The third variable returned by regression is
the correlation coefficient (R-value) between the outputs and targets. It is a
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measure of how well the variation in the output is explained by the targets. If
this number is equal to 1, then there is perfect correlation between targets
and outputs. In the example, the number is very close to 1, which indicates a
good fit.

The following figure illustrates the graphical output provided by regression.
The network outputs are plotted versus the targets as open circles. The best
linear fit is indicated by a dashed line. The perfect fit (output equal to targets)
is indicated by the solid line. In this example, it is difficult to distinguish the
best linear fit line from the perfect fit line because the fit is so good.
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Custom Networks
Neural Network Toolbox software provides a flexible network object type that
allows many kinds of networks to be created and then used with functions
such as init, sim, and train.

Type the following to see all the network creation functions in the toolbox.

help nnnetwork

This flexibility is possible because networks have an object-oriented
representation. The representation allows you to define various architectures
and assign various algorithms to those architectures.

To create custom networks, start with an empty network (obtained with the
network function) and set its properties as desired.

net = network

The network object consists of many properties that you can set to specify the
structure and behavior of your network.

The following sections show how to create a custom network by using these
properties.

Custom Network
Before you can build a network you need to know what it looks like. For
dramatic purposes (and to give the toolbox a workout) this section leads you
through the creation of the wild and complicated network shown below.
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Each of the two elements of the first network input is to accept values ranging
between 0 and 10. Each of the five elements of the second network input
ranges from −2 to 2.

Before you can complete your design of this network, the algorithms it
employs for initialization and training must be specified.

Each layer’s weights and biases are initialized with the Nguyen-Widrow
layer initialization method (initnw). The network is trained with
Levenberg-Marquardt backpropagation (trainlm), so that, given example
input vectors, the outputs of the third layer learn to match the associated
target vectors with minimal mean squared error (mse).

Network Definition
The first step is to create a new network. Type the following code to create a
network and view its many properties:

net = network
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Architecture Properties
The first group of properties displayed is labeled architecture properties.
These properties allow you to select the number of inputs and layers and
their connections.

Number of Inputs and Layers. The first two properties displayed in the
dimensions group are numInputs and numLayers. These properties allow you
to select how many inputs and layers you want the network to have.

net =

dimensions:
numInputs: 0
numLayers: 0
...

Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number
of layers in the custom network diagram.

net.numInputs = 2;
net.numLayers = 3;

net.numInputs is the number of input sources, not the number of elements in
an input vector (net.inputs{i}.size).

Bias Connections. Type net and press Enter to view its properties again.
The network now has two inputs and three layers.

net =
Neural Network:
dimensions:

numInputs: 2
numLayers: 3

Examine the next four properties in the connections group:

biasConnect: [0; 0; 0]
inputConnect: [0 0; 0 0; 0 0]
layerConnect: [0 0 0; 0 0 0; 0 0 0]
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outputConnect: [0 0 0]

These matrices of 1s and 0s represent the presence and absence of bias, input
weight, layer weight, and output connections. They are currently all zeros,
indicating that the network does not have any such connections.

The bias connection matrix is a 3-by-1 vector. To create a bias connection to
the ith layer you can set net.biasConnect(i) to 1. Specify that the first
and third layers are to have bias connections, as the diagram indicates, by
typing the following code:

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

You could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections. The input connection
matrix is 3-by-2, representing the presence of connections from two
sources (the two inputs) to three destinations (the three layers). Thus,
net.inputConnect(i,j) represents the presence of an input weight
connection going to the ith layer from the jth input.

To connect the first input to the first and second layers, and the second input
to the second layer (as indicated by the custom network diagram), type

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer-weight
connection going to the ith layer from the jth layer. Connect layers 1, 2, and 3
to layer 3 as follows:

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];
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Output Connections. The output connections are a 1-by-3 matrix, indicating
that they connect to one destination (the external world) from three sources
(the three layers).

To connect layers 2 and 3 to the network output, type

net.outputConnect = [0 1 1];

Number of Outputs
Type net and press Enter to view the updated properties. The final three
architecture properties are read-only values, which means their values are
determined by the choices made for other properties. The first read-only
property in the dimension group is the number of outputs:

numOutputs: 2

By defining output connection from layers 2 and 3, you specified that the
network has two outputs.

Subobject Properties
The next group of properties in the output display is subobjects:

subobjects:
inputs: {2x1 cell array of 2 inputs}
layers: {3x1 cell array of 3 layers}

outputs: {1x3 cell array of 2 outputs}
biases: {3x1 cell array of 2 biases}

inputWeights: {3x2 cell array of 3 weights}
layerWeights: {3x3 cell array of 3 weights}

Inputs
When you set the number of inputs (net.numInputs) to 2, the inputs property
becomes a cell array of two input structures. Each ith input structure
(net.inputs{i}) contains additional properties associated with the ith input.

To see how the input structures are arranged, type

net.inputs
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ans =
[1x1 nnetInput]
[1x1 nnetInput]

To see the properties associated with the first input, type

net.inputs{1}

The properties appear as follows:

ans =
name: 'Input'

feedbackOutput: []
processFcns: {}

processParams: {1x0 cell array of 0 params}
processSettings: {0x0 cell array of 0 settings}
processedRange: []
processedSize: 0

range: []
size: 0

userdata: (your custom info)

If you set the exampleInput property, the range, size, processedSize,
and processedRange properties will automatically be updated to match the
properties of the value of exampleInput.

Set the exampleInput property as follows:

net.inputs{1}.exampleInput = [0 10 5; 0 3 10];

If you examine the structure of the first input again, you see that it now has
new values.

The property processFcns can be set to one or more processing functions.
Type help nnprocess to see a list of these functions.

Set the second input vector ranges to be from −2 to 2 for five elements as
follows:

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
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View the new input properties. You will see that processParams,
processSettings, processedRange and processedSize have all been
updated to reflect that inputs will be processed using removeconstantrows
and mapminmax before being given to the network when the network is
simulated or trained. The property processParams contains the default
parameters for each processing function. You can alter these values, if you
like. See the reference page for each processing function to learn more about
their parameters.

You can set the size of an input directly when no processing functions are used:

net.inputs{2}.size = 5;

Layers. When you set the number of layers (net.numLayers) to 3, the layers
property becomes a cell array of three-layer structures. Type the following
line of code to see the properties associated with the first layer.

net.layers{1}
ans =

Neural Network Layer

name: 'Layer'
dimensions: 0

distanceFcn: (none)
distanceParam: (none)

distances: []
initFcn: 'initwb'

netInputFcn: 'netsum'
netInputParam: (none)

positions: []
range: []
size: 0

topologyFcn: (none)
transferFcn: 'purelin'

transferParam: (none)
userdata: (your custom info)

Type the following three lines of code to change the first layer’s size to 4
neurons, its transfer function to tansig, and its initialization function to the
Nguyen-Widrow function, as required for the custom network diagram.
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net.layers{1}.size = 4;
net.layers{1}.transferFcn = 'tansig';
net.layers{1}.initFcn = 'initnw';

The second layer is to have three neurons, the logsig transfer function, and
be initialized with initnw. Set the second layer’s properties to the desired
values as follows:

net.layers{2}.size = 3;
net.layers{2}.transferFcn = 'logsig';
net.layers{2}.initFcn = 'initnw';

The third layer’s size and transfer function properties don’t need to be
changed, because the defaults match those shown in the network diagram.
You need to set only its initialization function, as follows:

net.layers{3}.initFcn = 'initnw';

Outputs. Use this line of code to see how the outputs property is arranged:

net.outputs
ans =

[] [1x1 nnetOutput] [1x1 nnetOutput]

Note that outputs contains two output structures, one for layer 2 and one for
layer 3. This arrangement occurs automatically when net.outputConnect
is set to [0 1 1].

View the second layer’s output structure with the following expression:

net.outputs{2}
ans =

Neural Network Output

name: 'Output'
feedbackInput: []
feedbackDelay: 0
feedbackMode: 'none'
processFcns: {}

processParams: {1x0 cell array of 0 params}
processSettings: {0x0 cell array of 0 settings}
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processedRange: [3x2 double]
processedSize: 3

range: [3x2 double]
size: 3

userdata: (your custom info)

The size is automatically set to 3 when the second layer’s size
(net.layers{2}.size) is set to that value. Look at the third layer’s output
structure if you want to verify that it also has the correct size.

Outputs have processing properties that are automatically applied to target
values before they are used by the network during training. The same
processing settings are applied in reverse on layer output values before they
are returned as network output values during network simulation or training.

Similar to input-processing properties, setting the exampleOutput property
automatically causes size, range, processedSize, and processedRange to be
updated. Setting processFcns to a cell array list of processing function names
causes processParams, processSettings, processedRange to be updated.
You can then alter the processParam values, if you want to.

Biases, Input Weights, and Layer Weights. Enter the following
commands to see how bias and weight structures are arranged:

net.biases
net.inputWeights
net.layerWeights

Here are the results of typing net.biases:

ans =
[1x1 nnetBias]
[]
[1x1 nnetBias]

Each contains a structure where the corresponding connections
(net.biasConnect, net.inputConnect, and net.layerConnect) contain a 1.

Look at their structures with these lines of code:

net.biases{1}
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net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}

For example, typing net.biases{1} results in the following output:

initFcn: (none)
learn: true

learnFcn: (none)
learnParam: (none)

size: 4
userdata: (your custom info)

Specify the weights’ tap delay lines in accordance with the network diagram
by setting each weight’s delays property:

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions
Type net and press Return again to see the next set of properties.

functions:
adaptFcn: (none)

adaptParam: (none)
derivFcn: 'defaultderiv'

divideFcn: (none)
divideParam: (none)
divideMode: 'sample'

initFcn: 'initlay'
performFcn: 'mse'

performParam: .regularization, .normalization
plotFcns: {}

plotParams: {1x0 cell array of 0 params}
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trainFcn: (none)
trainParam: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network initializes itself
according to the layer initialization functions already set to initnw, the
Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of the network.

Set the performance function to mse (mean squared error) and the training
function to trainlm (Levenberg-Marquardt backpropagation) to meet the
final requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';

Set the divide function to dividerand (divide training data randomly).

net.divideFcn = 'dividerand';

During supervised training, the input and target data are randomly divided
into training, test, and validation data sets. The network is trained on the
training data until its performance begins to decrease on the validation
data, which signals that generalization has peaked. The test data provides a
completely independent test of network generalization.

Set the plot functions to plotperform (plot training, validation and test
performance) and plottrainstate (plot the state of the training algorithm
with respect to epochs).

net.plotFcns = {'plotperform','plottrainstate'};

Weight and Bias Values
Before initializing and training the network, type net and press Return, then
look at the weight and bias group of network properties.

8-55



8 Advanced Topics

weight and bias values:
IW: {3x2 cell} containing 3 input weight matrices
LW: {3x3 cell} containing 3 layer weight matrices
b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the
same positions that the connection properties (net.inputConnect,
net.layerConnect, net.biasConnect) contain 1s and the subobject
properties (net.inputWeights, net.layerWeights, net.biases) contain
structures.

Evaluating each of the following lines of code reveals that all the bias vectors
and weight matrices are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector
net.b{i} has as many rows as the size of the ith layer (net.layers{i}.size).

Each input weight net.IW{i,j} has as many columns as the size of the jth
input (net.inputs{j}.size) multiplied by the number of its delay values
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth
layer (net.layers{j}.size) multiplied by the number of its delay values
(length(net.layerWeights{i,j}.delays)).

Network Behavior

Initialization
Initialize your network with the following line of code:

net = init(net);

Check the network’s biases and weights again to see how they have changed:

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
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net.LW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example,

net.IW{1,1}
ans =

-0.3040 0.4703
-0.5423 -0.1395
0.5567 0.0604
0.2667 0.4924

Training
Define the following cell array of two input vectors (one with two elements,
one with five) for two time steps (i.e., two columns).

X = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]};

You want the network to respond with the following target sequences for the
second layer, which has three neurons, and the third layer with one neuron:

T = {[1; 1; 1] [0; 0; 0]; 1 -1};

Before training, you can simulate the network to see whether the initial
network’s response Y is close to the target T.

Y = sim(net,X)
Y =

[3x1 double] [3x1 double]
[ 1.7148] [ 2.2726]

The cell array Y is the output sequence of the network, which is also the
output sequence of the second and third layers. The values you got for the
second row can differ from those shown because of different initial weights
and biases. However, they will almost certainly not be equal to targets T,
which is also true of the values shown.

The next task is optional. On some occasions you may wish to alter the
training parameters before training. The following line of code displays the
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default Levenberg-Marquardt training parameters (defined when you set
net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans =
Show Training Window Feedback showWindow: true
Show Command Line Feedback showCommandLine: false
Command Line Frequency show: 25
Maximum Epochs epochs: 1000
Maximum Training Time time: Inf
Performance Goal goal: 0
Minimum Gradient min_grad: 1e-07
Maximum Validation Checks max_fail: 6
Mu mu: 0.001
Mu Decrease Ratio mu_dec: 0.1
Mu Increase Ratio mu_inc: 10
Maximum mu mu_max: 10000000000

You will not often need to modify these values. See the documentation for
the training function for information about what each of these means. They
have been initialized with default values that work well for a large range of
problems, so there is no need to change them here.

Next, train the network with the following call:

net = train(net,X,T);

Training launches the neural network training window. To open the
performance and training state plots, click the plot buttons.

After training, you can simulate the network to see if it has learned to
respond correctly:

Y = sim(net,X)

[3x1 double] [3x1 double]
[ 1.0000] [ -1.0000]
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The second network output (i.e., the second row of the cell array Y), which is
also the third layer’s output, matches the target sequence T.
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Additional Toolbox Functions
Most toolbox functions are explained in topics dealing with networks that use
them. However, some functions are not used by toolbox networks, but are
included because they might be useful to you in creating custom networks.

For instance, satlin and softmax are two transfer functions not used by
any standard network in the toolbox, but which you can use in your custom
networks.
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Custom Functions
The toolbox allows you to create and use your own custom functions. This
gives you a great deal of control over the algorithms used to initialize,
simulate, and train your networks.

Be aware, however, that custom functions may need updating to remain
compatible with future versions of the software. Backward compatibility of
custom functions cannot be guaranteed.

Template functions are available for you to copy, rename and customize, to
create your own versions of these kinds of functions. You can see the list of all
template functions by typing the following:

help nncustom

Each template is a simple version of a different type of function that you can
use with your own custom networks.

For instance, make a copy of the file tansig.m with the new name
mytransfer.m. Start editing the new file by changing the function name a
the top from tansig to mytransfer.

You can now edit each of the sections of code that make up a transfer function,
using the help comments in each of those sections to guide you.

Once you are done, store the new function in your working folder, and assign
the name of your transfer function to the transferFcn property of any layer
of any network object to put it to use.
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9 Historical Networks

Introduction
This chapter covers networks that are of historical interest, but that are not
as actively used today as networks presented in earlier chapters. Two of the
networks are single-layer networks that were the first neural networks for
which practical training algorithms were developed: perceptron networks and
ADALINE networks. This chapter also covers recurrent Hopfield networks.

The perceptron network is single-layer network whose weights and biases
can be trained to produce a correct target vector when presented with the
corresponding input vector. This perceptron rule was the first training
algorithm developed for neural networks. The original book on the perceptron
is Rosenblatt, F., Principles of Neurodynamics, Washington D.C., Spartan
Press, 1961 [Rose61].

At about the same time that Rosenblatt developed the perceptron network,
Widrow and Hoff developed a single-layer linear network and associated
learning rule, which they called the ADALINE (Adaptive Linear Neuron).
This network was used to implement adaptive filters, which are still actively
used today. The original paper describing this network is Widrow, B., and
M.E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention
Record, New York IRE, 1960, pp. 96–104.

The Hopfield network is used to store one or more stable target vectors. These
stable vectors can be viewed as memories that the network recalls when
provided with similar vectors that act as a cue to the network memory. You
might want to peruse a basic paper in this field:

Li, J., A.N. Michel, and W. Porod, “Analysis and synthesis of a class of
neural networks: linear systems operating on a closed hypercube,” IEEE
Transactions on Circuits and Systems, Vol. 36, No. 11, November 1989, pp.
1405–1422.
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Perceptron Networks
Rosenblatt [Rose61] created many variations of the perceptron. One of the
simplest was a single-layer network whose weights and biases could be trained
to produce a correct target vector when presented with the corresponding
input vector. The training technique used is called the perceptron learning
rule. The perceptron generated great interest due to its ability to generalize
from its training vectors and learn from initially randomly distributed
connections. Perceptrons are especially suited for simple problems in pattern
classification. They are fast and reliable networks for the problems they can
solve. In addition, an understanding of the operations of the perceptron
provides a good basis for understanding more complex networks.

The discussion of perceptrons in this chapter is necessarily brief. For a
more thorough discussion, see Chapter 4, “Perceptron Learning Rule,” of
[HDB1996], which discusses the use of multiple layers of perceptrons to solve
more difficult problems beyond the capability of one layer.

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim,
is shown below.

Each external input is weighted with an appropriate weight w1j, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.
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The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The
following figure show the input space of a two-input hard limit neuron with
the weights w1,1 = −1, w1,2 = 1 and a bias b = 1.

Two classification regions are formed by the decision boundary line L at
Wp + b = 0. This line is perpendicular to the weight matrix W and shifted
according to the bias b. Input vectors above and to the left of the line L will
result in a net input greater than 0 and, therefore, cause the hard-limit
neuron to output a 1. Input vectors below and to the right of the line L cause
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the neuron to output 0. You can pick weight and bias values to orient and
move the dividing line so as to classify the input space as desired.

Hard-limit neurons without a bias will always have a classification line going
through the origin. Adding a bias allows the neuron to solve problems where
the two sets of input vectors are not located on different sides of the origin.
The bias allows the decision boundary to be shifted away from the origin,
as shown in the plot above.

You might want to run the example program nnd4db. With it you can move
a decision boundary around, pick new inputs to classify, and see how the
repeated application of the learning rule yields a network that does classify
the input vectors properly.

Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights wi,j, as shown below in two
forms. As before, the network indices i and j indicate that wi,j is the strength
of the connection from the jth input to the ith neuron.
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The perceptron learning rule described shortly is capable of training only
a single layer. Thus only one-layer networks are considered here. This
restriction places limitations on the computation a perceptron can perform.
The types of problems that perceptrons are capable of solving are discussed in
“Limitations and Cautions” on page 9-16.

Create a Perceptron
You can create a perceptron with the following:

net = perceptron;
net = configure(net,P,T);

where input arguments are as follows:

• P is an R-by-Q matrix of Q input vectors of R elements each.

• T is an S-by-Q matrix of Q target vectors of S elements each.

Commonly, the hardlim function is used in perceptrons, so it is the default.

The following commands create a perceptron network with a single
one-element input vector with the values 0 and 2, and one neuron with
outputs that can be either 0 or 1:

P = [0 2];
T = [0 1];
net = perceptron;
net = configure(net,P,T);

You can see what network has been created by executing the following
command:

inputweights = net.inputweights{1,1}

which yields

inputweights =
delays: 0

initFcn: 'initzero'
learn: true
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learnFcn: 'learnp'
learnParam: (none)

size: [1 1]
weightFcn: 'dotprod'

weightParam: (none)
userdata: (your custom info)

The default learning function is learnp, which is discussed in “Perceptron
Learning Rule (learnp)” on page 9-7. The net input to the hardlim transfer
function is dotprod, which generates the product of the input vector and
weight matrix and adds the bias to compute the net input.

The default initialization function initzero is used to set the initial values
of the weights to zero.

Similarly,

biases = net.biases{1}

gives

biases =
initFcn: 'initzero'

learn: 1
learnFcn: 'learnp'

learnParam: []
size: 1

userdata: [1x1 struct]

You can see that the default initialization for the bias is also 0.

Perceptron Learning Rule (learnp)
Perceptrons are trained on examples of desired behavior. The desired
behavior can be summarized by a set of input, output pairs

p t p t p t1 1 2 1, , , Q Q

where p is an input to the network and t is the corresponding correct (target)
output. The objective is to reduce the error e, which is the difference t −
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a between the neuron response a and the target vector t. The perceptron
learning rule learnp calculates desired changes to the perceptron’s weights
and biases, given an input vector p and the associated error e. The target
vector t must contain values of either 0 or 1, because perceptrons (with
hardlim transfer functions) can only output these values.

Each time learnp is executed, the perceptron has a better chance of producing
the correct outputs. The perceptron rule is proven to converge on a solution in
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the
weight vector w to point toward input vectors to be classified as 1 and away
from vectors to be classified as 0. This results in a decision boundary that is
perpendicular to w and that properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is
correct (a = t and e = t – a = 0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1,
and e = t – a = 1), the input vector p is added to the weight vector w. This
makes the weight vector point closer to the input vector, increasing the chance
that the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 1 and t = 0, and
e = t – a = –1), the input vector p is subtracted from the weight vector w. This
makes the weight vector point farther away from the input vector, increasing
the chance that the input vector will be classified as a 0 in the future.

The perceptron learning rule can be written more succinctly in terms of the
error e = t – a and the change to be made to the weight vector Δw:

CASE 1. If e = 0, then make a change Δw equal to 0.

CASE 2. If e = 1, then make a change Δw equal to pT.

CASE 3. If e = –1, then make a change Δw equal to –pT.
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All three cases can then be written with a single expression:

Δw p p= − =( )t eT T

You can get the expression for changes in a neuron’s bias by noting that the
bias is simply a weight that always has an input of 1:

Δb t e= − =( )( ) 1

For the case of a layer of neurons you have

ΔW t a p e p= − =( )( ) ( )T T

and

Δb t a= − =( ) e

The perceptron learning rule can be summarized as follows:

W W epnew old T= +

and

b b enew old= +

where e = t – a.

Now try a simple example. Start with a single neuron having an input vector
with just two elements.

net = perceptron;
net = configure(net,[0;0],0);

To simplify matters, set the bias equal to 0 and the weights to 1 and -0.8:

net.b{1} = [0];
w = [1 -0.8];
net.IW{1,1} = w;
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The input target pair is given by

p = [1; 2];
t = [1];

You can compute the output and error with

a = net(p)
a =

0
e = t-a
e =

1

and use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[],[],[])
dw =

1 2

The new weights, then, are obtained as

w = w + dw
w =

2.0000 1.2000

The process of finding new weights (and biases) can be repeated until there are
no errors. Recall that the perceptron learning rule is guaranteed to converge
in a finite number of steps for all problems that can be solved by a perceptron.
These include all classification problems that are linearly separable. The
objects to be classified in such cases can be separated by a single line.

You might want to try the example nnd4pr. It allows you to pick new input
vectors and apply the learning rule to classify them.

Training (train)
If sim and learnp are used repeatedly to present inputs to a perceptron,
and to change the perceptron weights and biases according to the error, the
perceptron will eventually find weight and bias values that solve the problem,
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given that the perceptron can solve it. Each traversal through all the training
input and target vectors is called a pass.

The function train carries out such a loop of calculation. In each pass the
function train proceeds through the specified sequence of inputs, calculating
the output, error, and network adjustment for each input vector in the
sequence as the inputs are presented.

Note that train does not guarantee that the resulting network does its job.
You must check the new values ofW and b by computing the network output
for each input vector to see if all targets are reached. If a network does not
perform successfully you can train it further by calling train again with the
new weights and biases for more training passes, or you can analyze the
problem to see if it is a suitable problem for the perceptron. Problems that
cannot be solved by the perceptron network are discussed in “Limitations
and Cautions” on page 9-16.

To illustrate the training procedure, work through a simple problem. Consider
a one-neuron perceptron with a single vector input having two elements:

This network, and the problem you are about to consider, are simple enough
that you can follow through what is done with hand calculations if you want.
The problem discussed below follows that found in [HDB1996].

Suppose you have the following classification problem and would like to solve
it with a single vector input, two-element perceptron network.
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Use the initial weights and bias. Denote the variables at each step of this
calculation by using a number in parentheses after the variable. Thus, above,
the initial values are W(0) and b(0).

w( ) ( )0 0 0 0 0= [ ] =b

Start by calculating the perceptron’s output a for the first input vector p1,
using the initial weights and bias.
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The output a does not equal the target value t1, so use the perceptron rule to
find the incremental changes to the weights and biases based on the error.
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You can calculate the new weights and bias using the perceptron update rules.
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Now present the next input vector, p2. The output is calculated below.
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On this occasion, the target is 1, so the error is zero. Thus there are no
changes in weights or bias, soW(2) =W(1) = [−2 −2] and p(2) = p(1) = −1.

You can continue in this fashion, presenting p3 next, calculating an output
and the error, and making changes in the weights and bias, etc. After making
one pass through all of the four inputs, you get the valuesW(4) = [−3 −1] and
b(4) = 0. To determine whether a satisfactory solution is obtained, make one
pass through all input vectors to see if they all produce the desired target
values. This is not true for the fourth input, but the algorithm does converge
on the sixth presentation of an input. The final values are

W(6) = [−2 −3] and b(6) = 1.

This concludes the hand calculation. Now, how can you do this using the
train function?

The following code defines a perceptron.

net = perceptron;

Consider the application of a single input

p = [2; 2];

having the target

t = [0];

Set epochs to 1, so that train goes through the input vectors (only one here)
just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =

-2 -2
b =

-1
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Thus, the initial weights and bias are 0, and after training on only the first
vector, they have the values [−2 −2] and −1, just as you hand calculated.

Now apply the second input vector p2. The output is 1, as it will be until the
weights and bias are changed, but now the target is 1, the error will be 0, and
the change will be zero. You could proceed in this way, starting from the
previous result and applying a new input vector time after time. But you can
do this job automatically with train.

Apply train for one epoch, a single pass through the sequence of all four
input vectors. Start with the network definition.

net = perceptron;
net.trainParam.epochs = 1;

The input vectors and targets are

p = [[2;2] [1;-2] [-2;2] [-1;1]]
t = [0 1 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =

-3 -1
b =

0

This is the same result as you got previously by hand.

Finally, simulate the trained network for each of the inputs.

a = net(p)
a =

0 0 1 1
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The outputs do not yet equal the targets, so you need to train the network for
more than one pass. Try more epochs. This run gives a mean absolute error
performance of 0 after two epochs:

net.trainParam.epochs = 1000;
net = train(net,p,t);

Thus, the network was trained by the time the inputs were presented on the
third epoch. (As you know from hand calculation, the network converges on
the presentation of the sixth input vector. This occurs in the middle of the
second epoch, but it takes the third epoch to detect the network convergence.)
The final weights and bias are

w = net.iw{1,1}, b = net.b{1}
w =

-2 -3
b =

1

The simulated output and errors for the various inputs are

a = net(p)
a =

0 1 0 1
error = a-t
error =

0 0 0 0

You confirm that the training procedure is successful. The network converges
and produces the correct target outputs for the four input vectors.

The default training function for networks created with newp is trainc. (You
can find this by executing net.trainFcn.) This training function applies the
perceptron learning rule in its pure form, in that individual input vectors are
applied individually, in sequence, and corrections to the weights and bias are
made after each presentation of an input vector. Thus, perceptron training
with train will converge in a finite number of steps unless the problem
presented cannot be solved with a simple perceptron.

9-15



9 Historical Networks

The function train can be used in various ways by other networks as well.
Type help train to read more about this basic function.

You might want to try various example programs. For instance, demop1
illustrates classification and training of a simple perceptron.

Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the
input vectors to the network one at a time and makes corrections to the
network based on the results of each presentation. Use of adapt in this way
guarantees that any linearly separable problem is solved in a finite number of
training presentations.

As noted in the previous pages, perceptrons can also be trained with the
function train. Commonly when train is used for perceptrons, it presents
the inputs to the network in batches, and makes corrections to the network
based on the sum of all the individual corrections. Unfortunately, there is
no proof that such a training algorithm converges for perceptrons. On that
account the use of train for perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values
of a perceptron can take on only one of two values (0 or 1) because of the
hard-limit transfer function. Second, perceptrons can only classify linearly
separable sets of vectors. If a straight line or a plane can be drawn to separate
the input vectors into their correct categories, the input vectors are linearly
separable. If the vectors are not linearly separable, learning will never reach
a point where all vectors are classified properly. However, it has been proven
that if the vectors are linearly separable, perceptrons trained adaptively will
always find a solution in finite time. You might want to try demop6. It shows
the difficulty of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one
perceptron can be used to solve more difficult problems. For instance, suppose
that you have a set of four vectors that you would like to classify into distinct
groups, and that two lines can be drawn to separate them. A two-neuron
network can be found such that its two decision boundaries classify the inputs
into four categories. For additional discussion about perceptrons and to
examine more complex perceptron problems, see [HDB1996].
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Outliers and the Normalized Perceptron Rule
Long training times can be caused by the presence of an outlier input vector
whose length is much larger or smaller than the other input vectors. Applying
the perceptron learning rule involves adding and subtracting input vectors
from the current weights and biases in response to error. Thus, an input
vector with large elements can lead to changes in the weights and biases that
take a long time for a much smaller input vector to overcome. You might want
to try demop4 to see how an outlier affects the training.

By changing the perceptron learning rule slightly, you can make training
times insensitive to extremely large or small outlier input vectors.

Here is the original rule for updating weights:

Δw p p= − =( )t eT T

As shown above, the larger an input vector p, the larger its effect on the weight
vector w. Thus, if an input vector is much larger than other input vectors, the
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that the effect of each input vector on
the weights is of the same magnitude:

Δw
p
p

p
p

= − =( )t e
T T



The normalized perceptron rule is implemented with the function learnpn,
which is called exactly like learnp. The normalized perceptron rule function
learnpn takes slightly more time to execute, but reduces the number of
epochs considerably if there are outlier input vectors. You might try demop5
to see how this normalized training rule works.
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Linear Networks
The linear networks discussed in this section are similar to the perceptron,
but their transfer function is linear rather than hard-limiting. This allows
their outputs to take on any value, whereas the perceptron output is limited
to either 0 or 1. Linear networks, like the perceptron, can only solve linearly
separable problems.

Here you design a linear network that, when presented with a set of given
input vectors, produces outputs of corresponding target vectors. For each
input vector, you can calculate the network’s output vector. The difference
between an output vector and its target vector is the error. You would like
to find values for the network weights and biases such that the sum of the
squares of the errors is minimized or below a specific value. This problem is
manageable because linear systems have a single error minimum. In most
cases, you can calculate a linear network directly, such that its error is a
minimum for the given input vectors and target vectors. In other cases,
numerical problems prohibit direct calculation. Fortunately, you can always
train the network to have a minimum error by using the least mean squares
(Widrow-Hoff) algorithm.

This section introduces newlin, a function that creates a linear layer, and
newlind, a function that designs a linear layer for a specific purpose.

Neuron Model
A linear neuron with R inputs is shown below.
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This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function purelin.

The linear transfer function calculates the neuron’s output by simply
returning the value passed to it.

 = = + = +purelin n purelin b b( ) ( )Wp Wp

This neuron can be trained to learn an affine function of its inputs, or to find
a linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.

Network Architecture
The linear network shown below has one layer of S neurons connected to R
inputs through a matrix of weights W.
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Note that the figure on the right defines an S-length output vector a.

A single-layer linear network is shown. However, this network is just as
capable as multilayer linear networks. For every multilayer linear network,
there is an equivalent single-layer linear network.

Create a Linear Neuron (linearlayer)
Consider a single linear neuron with two inputs. The following figure shows
the diagram for this network.
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The weight matrixW in this case has only one row. The network output is

 = = + = +purelin n purelin b b( ) ( )Wp Wp

or

 = + +w p w p b1 1 1 1 2 2, ,

Like the perceptron, the linear network has a decision boundary that is
determined by the input vectors for which the net input n is zero. For n = 0
the equation Wp + b = 0 specifies such a decision boundary, as shown below
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area lead to an output greater than
0. Input vectors in the lower left white area lead to an output less than 0.
Thus, the linear network can be used to classify objects into two categories.
However, it can classify in this way only if the objects are linearly separable.
Thus, the linear network has the same limitation as the perceptron.

You can create this network using linearlayer, and configure its dimensions
with two values so the input has two elements and the output has one.

net = linearlayer;
net = configure(net,[0;0],0);

The network weights and biases are set to zero by default. You can see the
current values with the commands

W = net.IW{1,1}
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W =
0 0

and

b= net.b{1}
b =

0

However, you can give the weights any values that you want, such as 2 and
3, respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =

2 3

You can set and check the bias in the same way.

net.b{1} = [-4];
b = net.b{1}
b =

-4

You can simulate the linear network for a particular input vector. Try

p = [5;6];

You can find the network output with the function sim.

a = net(p)
a =

24

To summarize, you can create a linear network with newlin, adjust its
elements as you want, and simulate it with sim. You can find more about
newlin by typing help newlin.
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Least Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS)
algorithm is an example of supervised training, in which the learning rule is
provided with a set of examples of desired network behavior:

p t p t p t1 1 2 2, , , , ,{ } { } { } Q Q

Here pq is an input to the network, and tq is the corresponding target output.
As each input is applied to the network, the network output is compared
to the target. The error is calculated as the difference between the target
output and the network output. The goal is to minimize the average of the
sum of these errors.

mse
Q

e k
Q

t k k
k

Q

k

Q
= = −

= =
∑ ∑1 12

1

2

1

( ) ( ( ) ( ))

The LMS algorithm adjusts the weights and biases of the linear network so as
to minimize this mean square error.

Fortunately, the mean square error performance index for the linear network
is a quadratic function. Thus, the performance index will either have one
global minimum, a weak minimum, or no minimum, depending on the
characteristics of the input vectors. Specifically, the characteristics of the
input vectors determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].

Linear System Design (newlind)
Unlike most other network architectures, linear networks can be designed
directly if input/target vector pairs are known. You can obtain specific
network values for weights and biases to minimize the mean square error by
using the function newlind.

Suppose that the inputs and targets are

P = [1 2 3];
T= [2.0 4.1 5.9];
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Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done
properly.

Y = net(P)
Y =

2.0500 4.0000 5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolin1. It shows error surfaces for a particular problem,
illustrates the design, and plots the designed solution.

You can also use the function newlind to design linear networks having
delays in the input. Such networks are discussed in “Linear Networks with
Delays” on page 9-24. First, however, delays must be discussed.

Linear Networks with Delays

Tapped Delay Line
You need a new component, the tapped delay line, to make full use of the
linear network. Such a delay line is shown below. There the input signal
enters from the left and passes through N-1 delays. The output of the tapped
delay line (TDL) is an N-dimensional vector, made up of the input signal at
the current time, the previous input signal, etc.
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Linear Filter
You can combine a tapped delay line with a linear network to create the
linear filter shown.
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The output of the filter is given by

( ) ( ) ( ),k purelin b w p k i bi
i

R
= + = − + +

=
∑Wp 1

1

1

The network shown is referred to in the digital signal processing field as
a finite impulse response (FIR) filter [WiSt85]. Look at the code used to
generate and simulate such a network.

Suppose that you want a linear layer that outputs the sequence T, given the
sequence P and two initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5 6 4 20 7 8};

You can use newlind to design a network with delays to give the appropriate
outputs for the inputs. The delay initial outputs are supplied as a third
argument, as shown below.
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net = newlind(P,T,Pi);

You can obtain the output of the designed network with

Y = net(P,Pi)

to give

Y = [2.7297] [10.5405] [5.0090] [14.9550] [10.7838] [5.9820]

As you can see, the network outputs are not exactly equal to the targets, but
they are close and the mean square error is minimized.

LMS Algorithm (learnwh)
The LMS algorithm, or Widrow-Hoff learning algorithm, is based on an
approximate steepest descent procedure. Here again, linear networks are
trained on examples of correct behavior.

Widrow and Hoff had the insight that they could estimate the mean square
error by using the squared error at each iteration. If you take the partial
derivative of the squared error with respect to the weights and biases at the
kth iteration, you have

∂
∂

= ∂
∂

e k
w

e k
e k
wj j

2

1 1
2

( )
( )

( )

, ,

for j = 1,2,…,R and

∂
∂

= ∂
∂

e k
b

e k
e k
b

2
2

( )
( )

( )

Next look at the partial derivative with respect to the error.

∂
∂

= ∂ −
∂

= ∂
∂

− +e k
w

t k k
w w

t k k b
j j j

( ) [ ( ) ( )]
[ ( ) ( ( ) )]

, , ,1 1 1


Wp

or
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∂
∂
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∂
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Here pi(k) is the ith element of the input vector at the kth iteration.

This can be simplified to

∂
∂

= −e k
w

p k
j

j
( )

( )
,1

and

∂
∂

= −e k
b
( )

1

Finally, change the weight matrix, and the bias will be

2αe(k)p(k)

and

2αe(k)

These two equations form the basis of the Widrow-Hoff (LMS) learning
algorithm.

These results can be extended to the case of multiple neurons, and written
in matrix form as

W W e p
b b e

( ) ( ) ( ) ( )
( ) ( ) ( )

k k k k
k k k

T+ = +
+ = +

1 2
1 2




Here the error e and the bias b are vectors, and α is a learning rate. If α is
large, learning occurs quickly, but if it is too large it can lead to instability
and errors might even increase. To ensure stable learning, the learning rate
must be less than the reciprocal of the largest eigenvalue of the correlation
matrix pTp of the input vectors.
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You might want to read some of Chapter 10 of [HDB96] for more information
about the LMS algorithm and its convergence.

Fortunately, there is a toolbox function, learnwh, that does all the calculation
for you. It calculates the change in weights as

dw = lr*e*p'

and the bias change as

db = lr*e

The constant 2, shown a few lines above, has been absorbed into the code
learning rate lr. The function maxlinlr calculates this maximum stable
learning rate lr as 0.999 * P'*P.

Type help learnwh and help maxlinlr for more details about these two
functions.

Linear Classification (train)
Linear networks can be trained to perform linear classification with the
function train. This function applies each vector of a set of input vectors
and calculates the network weight and bias increments due to each of the
inputs according to learnp. Then the network is adjusted with the sum of
all these corrections. Each pass through the input vectors is called an epoch.
This contrasts with adapt which adjusts weights for each input vector as it
is presented.

Finally, train applies the inputs to the new network, calculates the outputs,
compares them to the associated targets, and calculates a mean square error.
If the error goal is met, or if the maximum number of epochs is reached,
the training is stopped, and train returns the new network and a training
record. Otherwise train goes through another epoch. Fortunately, the LMS
algorithm converges when this procedure is executed.

A simple problem illustrates this procedure. Consider the linear network
introduced earlier.

9-29



9 Historical Networks

Suppose you have the following classification problem.
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Here there are four input vectors, and you want a network that produces the
output corresponding to each input vector when that vector is presented.

Use train to get the weights and biases for a network that produces the
correct targets for each input vector. The initial weights and bias for the
new network are 0 by default. Set the error goal to 0.1 rather than accept
its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
T = [0 1 0 1];
net = linearlayer;
net.trainParam.goal= 0.1;
net = train(net,P,T);

The problem runs for 64 epochs, achieving a mean square error of 0.0999.
The new weights and bias are

weights = net.iw{1,1}
weights =

-0.0615 -0.2194
bias = net.b(1)
bias =

[0.5899]
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You can simulate the new network as shown below.

A = net(P)
A =

0.0282 0.9672 0.2741 0.4320

You can also calculate the error.

err = T - sim(net,P)
err =

-0.0282 0.0328 -0.2741 0.5680

Note that the targets are not realized exactly. The problem would have run
longer in an attempt to get perfect results had a smaller error goal been
chosen, but in this problem it is not possible to obtain a goal of 0. The network
is limited in its capability. See “Limitations and Cautions” on page 9-31 for
examples of various limitations.

This example program, demolin2, shows the training of a linear neuron and
plots the weight trajectory and error during training.

You might also try running the example program nnd10lc. It addresses a
classic and historically interesting problem, shows how a network can be
trained to classify various patterns, and shows how the trained network
responds when noisy patterns are presented.

Limitations and Cautions
Linear networks can only learn linear relationships between input and output
vectors. Thus, they cannot find solutions to some problems. However, even if
a perfect solution does not exist, the linear network will minimize the sum
of squared errors if the learning rate lr is sufficiently small. The network
will find as close a solution as is possible given the linear nature of the
network’s architecture. This property holds because the error surface of a
linear network is a multidimensional parabola. Because parabolas have only
one minimum, a gradient descent algorithm (such as the LMS rule) must
produce a solution at that minimum.
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Linear networks have various other limitations. Some of them are discussed
below.

Overdetermined Systems
Consider an overdetermined system. Suppose that you have a network to
be trained with four one-element input vectors and four targets. A perfect
solution to wp + b = t for each of the inputs might not exist, for there are four
constraining equations, and only one weight and one bias to adjust. However,
the LMS rule still minimizes the error. You might try demolin4 to see how
this is done.

Underdetermined Systems
Consider a single linear neuron with one input. This time, in demolin5, train
it on only one one-element input vector and its one-element target vector:

P = [1.0];
T = [0.5];

Note that while there is only one constraint arising from the single
input/target pair, there are two variables, the weight and the bias. Having
more variables than constraints results in an underdetermined problem with
an infinite number of solutions. You can try demolin5 to explore this topic.

Linearly Dependent Vectors
Normally it is a straightforward job to determine whether or not a linear
network can solve a problem. Commonly, if a linear network has at least
as many degrees of freedom (S *R + S = number of weights and biases) as
constraints (Q = pairs of input/target vectors), then the network can solve the
problem. This is true except when the input vectors are linearly dependent
and they are applied to a network without biases. In this case, as shown
with the example demolin6, the network cannot solve the problem with zero
error. You might want to try demolin6.

Too Large a Learning Rate
You can always train a linear network with the Widrow-Hoff rule to find the
minimum error solution for its weights and biases, as long as the learning
rate is small enough. Example demolin7 shows what happens when a
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neuron with one input and a bias is trained with a learning rate larger than
that recommended by maxlinlr. The network is trained with two different
learning rates to show the results of using too large a learning rate.
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Hopfield Network

Fundamentals
The goal here is to design a network that stores a specific set of equilibrium
points such that, when an initial condition is provided, the network eventually
comes to rest at such a design point. The network is recursive in that the
output is fed back as the input, once the network is in operation. Hopefully,
the network output will settle on one of the original design points.

The design method presented is not perfect in that the designed network can
have spurious undesired equilibrium points in addition to the desired ones.
However, the number of these undesired points is made as small as possible
by the design method. Further, the domain of attraction of the designed
equilibrium points is as large as possible.

The design method is based on a system of first-order linear ordinary
differential equations that are defined on a closed hypercube of the state
space. The solutions exist on the boundary of the hypercube. These systems
have the basic structure of the Hopfield model, but are easier to understand
and design than the Hopfield model.

The material in this section is based on the following paper: Jian-Hua Li,
Anthony N. Michel, and Wolfgang Porod, “Analysis and synthesis of a class
of neural networks: linear systems operating on a closed hypercube,” IEEE
Trans. on Circuits and Systems, Vol. 36, No. 11, November 1989, pp. 1405–22.

For further information on Hopfield networks, read Chapter 18 of the
Hopfield Network [HDB96].

Architecture
The architecture of the Hopfield network follows.
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As noted, the input p to this network merely supplies the initial conditions.

The Hopfield network uses the saturated linear transfer function satlins.

For inputs less than −1 satlins produces −1. For inputs in the range −1 to +1
it simply returns the input value. For inputs greater than +1 it produces +1.

This network can be tested with one or more input vectors that are presented
as initial conditions to the network. After the initial conditions are given, the
network produces an output that is then fed back to become the input. This
process is repeated over and over until the output stabilizes. Hopefully, each
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output vector eventually converges to one of the design equilibrium point
vectors that is closest to the input that provoked it.

Design (newhop)
Li et al. [LiMi89] have studied a system that has the basic structure of the
Hopfield network but is, in Li’s own words, “easier to analyze, synthesize, and
implement than the Hopfield model.” The authors are enthusiastic about
the reference article, as it has many excellent points and is one of the most
readable in the field. However, the design is mathematically complex, and
even a short justification of it would burden this guide. Thus the Li design
method is presented, with thanks to Li et al., as a recipe that is found in
the function newhop.

Given a set of target equilibrium points represented as a matrix T of vectors,
newhop returns weights and biases for a recursive network. The network is
guaranteed to have stable equilibrium points at the target vectors, but it
could contain other spurious equilibrium points as well. The number of these
undesired points is made as small as possible by the design method.

Once the network has been designed, it can be tested with one or more input
vectors. Hopefully those input vectors close to target equilibrium points will
find their targets. As suggested by the network figure, an array of input
vectors is presented one at a time or in a batch. The network proceeds to give
output vectors that are fed back as inputs. These output vectors can be can be
compared to the target vectors to see how the solution is proceeding.

The ability to run batches of trial input vectors quickly allows you to check
the design in a relatively short time. First you might check to see that the
target equilibrium point vectors are indeed contained in the network. Then
you could try other input vectors to determine the domains of attraction of the
target equilibrium points and the locations of spurious equilibrium points if
they are present.

Consider the following design example. Suppose that you want to design a
network with two stable points in a three-dimensional space.

T = [-1 -1 1; 1 -1 1]'
T =

-1 1
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-1 -1
1 1

You can execute the design with

net = newhop(T);

Next, check to make sure that the designed network is at these two points,
as follows. Because Hopfield networks have no inputs, the second argument
to the network is an empty cell array whose columns indicate the number
of time steps.

Ai = {T};
[Y,Pf,Af] = net(cell(1,2),{},Ai);
Y{2}

This gives you

-1 1
-1 -1
1 1

Thus, the network has indeed been designed to be stable at its design points.
Next you can try another input condition that is not a design point, such as

Ai = {[-0.9; -0.8; 0.7]};

This point is reasonably close to the first design point, so you might anticipate
that the network would converge to that first point. To see if this happens,
run the following code.

[Y,Pf,Af] = net(cell(1,5),{},Ai);
Y{end}

This produces

-1
-1
1

Thus, an original condition close to a design point did converge to that point.
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This is, of course, the hope for all such inputs. Unfortunately, even the best
known Hopfield designs occasionally include spurious undesired stable points
that attract the solution.

Example
Consider a Hopfield network with just two neurons. Each neuron has a bias
and weights to accommodate two-element input vectors weighted. The target
equilibrium points are defined to be stored in the network as the two columns
of the matrix T.

T = [1 -1; -1 1]'
T =

1 -1
-1 1

Here is a plot of the Hopfield state space with the two stable points labeled
with * markers.

These target stable points are given to newhop to obtain weights and biases
of a Hopfield network.

net = newhop(T);
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The design returns a set of weights and a bias for each neuron. The results
are obtained from

W = net.LW{1,1}

which gives

W =
0.6925 -0.4694

-0.4694 0.6925

and from

b = net.b{1,1}

which gives

b =
0
0

Next test the design with the target vectors T to see if they are stored in the
network. The targets are used as inputs for the simulation function sim.

Ai = {T};
[Y,Pf,Af] = net(cell(1,2),{},Ai);
Y = Y{end}
ans =

1 -1
-1 1

As hoped, the new network outputs are the target vectors. The solution stays
at its initial conditions after a single update and, therefore, will stay there
for any number of updates.

Now you might wonder how the network performs with various random input
vectors. Here is a plot showing the paths that the network took through its
state space to arrive at a target point.
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This plot show the trajectories of the solution for various starting points. You
can try the example demohop1 to see more of this kind of network behavior.

Hopfield networks can be designed for an arbitrary number of dimensions.
You can try demohop3 to see a three-dimensional design.

Unfortunately, Hopfield networks can have both unstable equilibrium points
and spurious stable points. You can try examples demohop2 and demohop4
to investigate these issues.
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Summary
Hopfield networks can act as error correction or vector categorization
networks. Input vectors are used as the initial conditions to the network,
which recurrently updates until it reaches a stable output vector.

Hopfield networks are interesting from a theoretical standpoint, but are
seldom used in practice. Even the best Hopfield designs may have spurious
stable points that lead to incorrect answers. More efficient and reliable error
correction techniques, such as backpropagation, are available.

Functions
This chapter introduces the following functions:

Function Description

newhop Create a Hopfield recurrent network.

satlins Symmetric saturating linear transfer function.
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Network Properties
These properties define the basic features of a network. “Subobject Properties”
on page 10-15 describes properties that define network details.

General
Here are the general properties of neural networks.

net.name
This property consists of a string defining the network name. Network
creation functions, such as feedforwardnet, define this appropriately. But it
can be set to any string as desired.

net.userdata
This property provides a place for users to add custom information to a
network object. Only one field is predefined. It contains a secret message to
all Neural Network Toolbox users:

net.userdata.note

Efficiency
Here are the efficiency properties of neural networks.

net.efficiency.cacheDelayedInput
This property can be set to true (the default) or false. If true then the delayed
inputs of each input weight are calculated once during training and reused,
instead of recalculated each time they are needed. This results in faster
training, but at the expense of memory efficiency. For greater memory
efficiency set this property to false.

net.efficiency.flattenTime
This property can be set to true (the default) or false. If true then time series
data used to train static networks will be reformatted as static data before
training. This results in faster training at the expense of memory efficiency.
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For greater memory efficiency, either only use static data for static networks,
or set this property to false.

net.efficiency.memoryReduction
This property can be set to 1 (the default) or any integer greater than 1. If set
to an integer N, then simulation and error gradient and Jacobian calculations
will be split in time into N subcalculations by groups of samples. This will
result in greater time overhead but result in reduced memory requirements
for storing intermediate values. For greater memory efficiency, set this to
higher values.

Architecture
These properties determine the number of network subobjects (which include
inputs, layers, outputs, targets, biases, and weights), and how they are
connected.

net.numInputs
This property defines the number of inputs a network receives. It can be
set to 0 or a positive integer.

Clarification. The number of network inputs and the size of a network
input are not the same thing. The number of inputs defines how many sets
of vectors the network receives as input. The size of each input (i.e., the
number of elements in each input vector) is determined by the input size
(net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects. Any change to this property results in a change in the size of
the matrix defining connections to layers from inputs, (net.inputConnect)
and the size of the cell array of input subobjects (net.inputs).

net.numLayers
This property defines the number of layers a network has. It can be set to 0
or a positive integer.
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Side Effects. Any change to this property changes the size of each of these
Boolean matrices that define connections to and from layers:

net.biasConnect
net.inputConnect
net.layerConnect
net.outputConnect

and changes the size of each cell array of subobject structures whose size
depends on the number of layers:

net.biases
net.inputWeights
net.layerWeights
net.outputs

and also changes the size of each of the network’s adjustable parameter’s
properties:

net.IW
net.LW
net.b

net.biasConnect
This property defines which layers have biases. It can be set to any N-by-1
matrix of Boolean values, where Nl is the number of network layers
(net.numLayers). The presence (or absence) of a bias to the ith layer is
indicated by a 1 (or 0) at

net.biasConnect(i)

Side Effects. Any change to this property alters the presence or absence of
structures in the cell array of biases (net.biases) and, in the presence or
absence of vectors in the cell array, of bias vectors (net.b).

net.inputConnect
This property defines which layers have weights coming from inputs.
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It can be set to any Nl × Ni matrix of Boolean values, where Nl is the number
of network layers (net.numLayers), and Ni is the number of network inputs
(net.numInputs). The presence (or absence) of a weight going to the ith layer
from the jth input is indicated by a 1 (or 0) at net.inputConnect(i,j).

Side Effects. Any change to this property alters the presence or absence of
structures in the cell array of input weight subobjects (net.inputWeights)
and the presence or absence of matrices in the cell array of input weight
matrices (net.IW).

net.layerConnect
This property defines which layers have weights coming from other layers. It
can be set to any Nl × Nl matrix of Boolean values, where Nl is the number of
network layers (net.numLayers). The presence (or absence) of a weight going
to the ith layer from the jth layer is indicated by a 1 (or 0) at

net.layerConnect(i,j)

Side Effects. Any change to this property alters the presence or absence of
structures in the cell array of layer weight subobjects (net.layerWeights)
and the presence or absence of matrices in the cell array of layer weight
matrices (net.LW).

net.outputConnect
This property defines which layers generate network outputs. It can be set to
any 1 × Nlmatrix of Boolean values, where Nl is the number of network layers
(net.numLayers). The presence (or absence) of a network output from the ith
layer is indicated by a 1 (or 0) at net.outputConnect(i).

Side Effects. Any change to this property alters the number of network
outputs (net.numOutputs) and the presence or absence of structures in the
cell array of output subobjects (net.outputs).

net.numOutputs (read only)
This property indicates how many outputs the network has. It is always equal
to the number of 1s in net.outputConnect.
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net.numInputDelays (read only)
This property indicates the number of time steps of past inputs that must be
supplied to simulate the network. It is always set to the maximum delay
value associated with any of the network’s input weights:

numInputDelays = 0;
for i=1:net.numLayers

for j=1:net.numInputs
if net.inputConnect(i,j)

numInputDelays = max( ...
[numInputDelays net.inputWeights{i,j}.delays]);

end
end

end

net.numLayerDelays (read only)
This property indicates the number of time steps of past layer outputs that
must be supplied to simulate the network. It is always set to the maximum
delay value associated with any of the network’s layer weights:

numLayerDelays = 0;
for i=1:net.numLayers

for j=1:net.numLayers
if net.layerConnect(i,j)

numLayerDelays = max( ...
[numLayerDelays net.layerWeights{i,j}.delays]);

end
end

end

net.numWeightElements (read only)
This property indicates the number of weight and bias values in the network.
It is the sum of the number of elements in the matrices stored in the two
cell arrays:

net.IW
new.b
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Subobject Structures
These properties consist of cell arrays of structures that define each of the
network’s inputs, layers, outputs, targets, biases, and weights.

The properties for each kind of subobject are described in “Subobject
Properties” on page 10-15.

net.inputs
This property holds structures of properties for each of the network’s inputs.
It is always an Ni × 1 cell array of input structures, where Ni is the number
of network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at

net.inputs{i}

Input Properties. See “Inputs” on page 10-15 for descriptions of input
properties.

net.layers
This property holds structures of properties for each of the network’s layers.
It is always an Nl × 1 cell array of layer structures, where Nl is the number
of network layers (net.numLayers).

The structure defining the properties of the ith layer is located at
net.layers{i}.

Layer Properties. See “Layers” on page 10-17 for descriptions of layer
properties.

net.outputs
This property holds structures of properties for each of the network’s outputs.
It is always a 1 × Nl cell array, where Nl is the number of network outputs
(net.numOutputs).
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The structure defining the properties of the output from the ith layer (or a null
matrix []) is located at net.outputs{i} if net.outputConnect(i) is 1 (or 0).

Output Properties. See “Outputs” on page 10-23 for descriptions of output
properties.

net.biases
This property holds structures of properties for each of the network’s biases.
It is always an Nl × 1 cell array, where Nl is the number of network layers
(net.numLayers).

The structure defining the properties of the bias associated with the ith layer
(or a null matrix []) is located at net.biases{i} if net.biasConnect(i) is
1 (or 0).

Bias Properties. See “Biases” on page 10-25 for descriptions of bias
properties.

net.inputWeights
This property holds structures of properties for each of the network’s input
weights. It is always an Nl × Ni cell array, where Nl is the number of
network layers (net.numLayers), and Ni is the number of network inputs
(net.numInputs).

The structure defining the properties of the weight going to the ith layer from
the jth input (or a null matrix []) is located at net.inputWeights{i,j} if
net.inputConnect(i,j) is 1 (or 0).

Input Weight Properties. See “Input Weights” on page 10-26 for
descriptions of input weight properties.

net.layerWeights
This property holds structures of properties for each of the network’s layer
weights. It is always an Nl ×Nl cell array, where Nl is the number of network
layers (net.numLayers).
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The structure defining the properties of the weight going to the ith layer from
the jth layer (or a null matrix []) is located at net.layerWeights{i,j} if
net.layerConnect(i,j) is 1 (or 0).

Layer Weight Properties. See “Layer Weights” on page 10-28 for
descriptions of layer weight properties.

Functions
These properties define the algorithms to use when a network is to adapt, is
to be initialized, is to have its performance measured, or is to be trained.

net.adaptFcn
This property defines the function to be used when the network adapts. It can
be set to the name of any network adapt function. The network adapt function
is used to perform adaption whenever adapt is called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

For a list of functions, type help nntrain.

Side Effects. Whenever this property is altered, the network’s adaption
parameters (net.adaptParam) are set to contain the parameters and default
values of the new function.

net.adaptParam
This property defines the parameters and values of the current adapt
function. Call help on the current adapt function to get a description of what
each field means:

help(net.adaptFcn)

net.derivFcn
This property defines the derivative function to be used to calculate error
gradients and Jacobians when the network is trained using a supervised
algorithm, such as backpropagation. You can set this property to the name of
any derivative function.
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For a list of functions, type help nnderivative.

net.divideFcn
This property defines the data division function to be used when the network
is trained using a supervised algorithm, such as backpropagation. You can set
this property to the name of a division function.

For a list of functions, type help nndivision.

Side Effects. Whenever this property is altered, the network’s adaption
parameters (net.divideParam) are set to contain the parameters and default
values of the new function.

net.divideParam
This property defines the parameters and values of the current data-division
function. To get a description of what each field means, type the following
command:

help(net.divideParam)

net.divideMode
This property defines the target data dimensions which to divide up when
the data division function is called. Its default value is 'sample' for
static networks and 'time' for dynamic networks. It may also be set to
'sampletime' to divide targets by both sample and timestep, 'all' to divide
up targets by every scalar value, or 'none' to not divide up data at all (in
which case all data is used for training, none for validation or testing).

net.initFcn
This property defines the function used to initialize the network’s weight
matrices and bias vectors. . The initialization function is used to initialize
the network whenever init is called:

net = init(net)
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Side Effects. Whenever this property is altered, the network’s initialization
parameters (net.initParam) are set to contain the parameters and default
values of the new function.

net.initParam
This property defines the parameters and values of the current initialization
function. Call help on the current initialization function to get a description
of what each field means:

help(net.initFcn)

net.performFcn
This property defines the function used to measure the network’s performance.
The performance function is used to calculate network performance during
training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type help nnperformance.

Side Effects. Whenever this property is altered, the network’s performance
parameters (net.performParam) are set to contain the parameters and
default values of the new function.

net.performParam
This property defines the parameters and values of the current performance
function. Call help on the current performance function to get a description of
what each field means:

help(net.performFcn)

net.plotFcns
This property consists of a row cell array of strings, defining the plot functions
associated with a network. The neural network training window, which is
opened by the train function, shows a button for each plotting function. Click
the button during or after training to open the desired plot.
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net.plotParams
This property consists of a row cell array of structures, defining the
parameters and values of each plot function in net.plotFcns. Call help on
the each plot function to get a description of what each field means:

help(net.plotFcns{i})

net.trainFcn
This property defines the function used to train the network. It can be set to
the name of any of the training functions, which is used to train the network
whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

For a list of functions, type help nntrain.

Side Effects. Whenever this property is altered, the network’s training
parameters (net.trainParam) are set to contain the parameters and default
values of the new function.

net.trainParam
This property defines the parameters and values of the current training
function. Call help on the current training function to get a description of
what each field means:

help(net.trainFcn)

Weight and Bias Values
These properties define the network’s adjustable parameters: its weight
matrices and bias vectors.

net.IW
This property defines the weight matrices of weights going to layers from
network inputs. It is always an Nl × Ni cell array, where Nl is the number
of network layers (net.numLayers), and Ni is the number of network inputs
(net.numInputs).
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The weight matrix for the weight going to the ith layer from the jth input (or
a null matrix []) is located at net.IW{i,j} if net.inputConnect(i,j) is
1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to
(net.layers{i}.size). It has as many columns as the product of the input
size with the number of delays associated with the weight:

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

These dimensions can also be obtained from the input weight properties:

net.inputWeights{i,j}.size

net.LW
This property defines the weight matrices of weights going to layers from
other layers. It is always an Nl × Nl cell array, where Nl is the number of
network layers (net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or
a null matrix []) is located at net.LW{i,j} if net.layerConnect(i,j) is
1 (or 0).

The weight matrix has as many rows as the size of the layer it goes to
(net.layers{i}.size). It has as many columns as the product of the size of
the layer it comes from with the number of delays associated with the weight:

net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties:

net.layerWeights{i,j}.size

net.b
This property defines the bias vectors for each layer with a bias. It is always an
Nl × 1 cell array, where Nl is the number of network layers (net.numLayers).
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The bias vector for the ith layer (or a null matrix []) is located at net.b{i}
if net.biasConnect(i) is 1 (or 0).

The number of elements in the bias vector is always equal to the size of the
layer it is associated with (net.layers{i}.size).

This dimension can also be obtained from the bias properties:

net.biases{i}.size
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Subobject Properties
These properties define the details of a network’s inputs, layers, outputs,
targets, biases, and weights.

Inputs
These properties define the details of each ith network input.

net.inputs{1}.name
This property consists of a string defining the input name. Network creation
functions, such as feedforwardnet, define this appropriately. But it can be
set to any string as desired.

net.inputs{i}.feedbackInput (read only)
If this network is associated with an open-loop feedback output, then this
property will indicate the index of that output. Otherwise it will be an empty
matrix.

net.inputs{i}.processFcns
This property defines a row cell array of processing function names to be used
by ith network input. The processing functions are applied to input values
before the network uses them.

Side Effects. Whenever this property is altered, the input processParams
are set to default values for the given processing functions, processSettings,
processedSize, and processedRange are defined by applying the process
functions and parameters to exampleInput.

For a list of processing functions, type help nnprocess.

net.inputs{i}.processParams
This property holds a row cell array of processing function parameters to be
used by ith network input. The processing parameters are applied by the
processing functions to input values before the network uses them.
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Side Effects. Whenever this property is altered, the input processSettings,
processedSize, and processedRange are defined by applying the process
functions and parameters to exampleInput.

net.inputs{i}.processSettings (read only)
This property holds a row cell array of processing function settings to be
used by ith network input. The processing settings are found by applying
the processing functions and parameters to exampleInput and then used to
provide consistent results to new input values before the network uses them.

net.inputs{i}.processedRange (read only)
This property defines the range of exampleInput values after they have been
processed with processingFcns and processingParams.

net.inputs{i}.processedSize (read only)
This property defines the number of rows in the exampleInput values after
they have been processed with processingFcns and processingParams.

net.inputs{i}.range
This property defines the range of each element of the ith network input.

It can be set to any Ri × 2 matrix, where Ri is the number of elements in
the input (net.inputs{i}.size), and each element in column 1 is less than
the element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input
element, in that order:

net.inputs{i}(j,:)

Uses. Some initialization functions use input ranges to find appropriate
initial values for input weight matrices.

Side Effects. Whenever the number of rows in this property is altered,
the input size, processedSize, and processedRange change to remain
consistent. The sizes of any weights coming from this input and the
dimensions of the weight matrices also change.
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net.inputs{i}.size
This property defines the number of elements in the ith network input. It
can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the input range,
processedRange, and processedSize are updated. Any associated input
weights change size accordingly.

net.inputs{i}.userdata
This property provides a place for users to add custom information to the
ith network input.

Layers
These properties define the details of each ith network layer.

net.layers{i}.name
This property consists of a string defining the layer name. Network creation
functions, such as feedforwardnet, define this appropriately. But it can be
set to any string as desired.

net.layers{i}.dimensions
This property defines the physical dimensions of the ith layer’s neurons.
Being able to arrange a layer’s neurons in a multidimensional manner is
important for self-organizing maps.

It can be set to any row vector of 0 or positive integer elements, where the
product of all the elements becomes the number of neurons in the layer
(net.layers{i}.size).

Uses. Layer dimensions are used to calculate the neuron positions within
the layer (net.layers{i}.positions) using the layer’s topology function
(net.layers{i}.topologyFcn).
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Side Effects. Whenever this property is altered, the layer’s size
(net.layers{i}.size) changes to remain consistent. The layer’s neuron
positions (net.layers{i}.positions) and the distances between the neurons
(net.layers{i}.distances) are also updated.

net.layers{i}.distanceFcn
This property defines which of the distance functions is used to calculate
distances between neurons in the ith layer from the neuron positions.
Neuron distances are used by self-organizing maps. It can be set to the name
of any distance function.

For a list of functions, type help nndistance.

Side Effects. Whenever this property is altered, the distances between the
layer’s neurons (net.layers{i}.distances) are updated.

net.layers{i}.distances (read only)
This property defines the distances between neurons in the ith layer. These
distances are used by self-organizing maps:

net.layers{i}.distances

It is always set to the result of applying the layer’s distance function
(net.layers{i}.distanceFcn) to the positions of the layer’s neurons
(net.layers{i}.positions).

net.layers{i}.initFcn
This property defines which of the layer initialization functions are used to
initialize the ith layer, if the network initialization function (net.initFcn)
is initlay. If the network initialization is set to initlay, then the function
indicated by this property is used to initialize the layer’s weights and biases.

net.layers{i}.netInputFcn
This property defines which of the net input functions is used to calculate
the ith layer’s net input, given the layer’s weighted inputs and bias during
simulating and training.
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For a list of functions, type help nnnetinput.

net.layers{i}.netInputParam
This property defines the parameters of the layer’s net input function. Call
help on the current net input function to get a description of each field:

help(net.layers{i}.netInputFcn)

net.layers{i}.positions (read only)
This property defines the positions of neurons in the ith layer. These positions
are used by self-organizing maps.

It is always set to the result of applying the layer’s topology function
(net.layers{i}.topologyFcn) to the positions of the layer’s dimensions
(net.layers{i}.dimensions).

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first-layer neurons of a network are arranged with
dimensions (net.layers{1}.dimensions) of [4 5], and the topology function
(net.layers{1}.topologyFcn) is hextop, the neurons’ positions can be
plotted as follows:

plotsom(net.layers{1}.positions)
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net.layers{i}.range (read only)
This property defines the output range of each neuron of the ith layer.

It is set to an Si × 2 matrix, where Si is the number of neurons in the layer
(net.layers{i}.size), and each element in column 1 is less than the element
next to it in column 2.

Each jth row defines the minimum and maximum output values of the layer’s
transfer function net.layers{i}.transferFcn.

net.layers{i}.size
This property defines the number of neurons in the ith layer. It can be set to 0
or a positive integer.

Side Effects. Whenever this property is altered, the sizes of any input
weights going to the layer (net.inputWeights{i,:}.size), any layer weights
going to the layer (net.layerWeights{i,:}.size) or coming from the layer
(net.inputWeights{i,:}.size), and the layer’s bias (net.biases{i}.size),
change.
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The dimensions of the corresponding weight matrices (net.IW{i,:},
net.LW{i,:}, net.LW{:,i}), and biases (net.b{i}) also change.

Changing this property also changes the size of the layer’s output
(net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer’s neurons
(net.layers{i}.dimension) are set to the same value. (This results in a
one-dimensional arrangement of neurons. If another arrangement is required,
set the dimensions property directly instead of using size.)

net.layers{i}.topologyFcn
This property defines which of the topology functions are used to calculate
the ith layer’s neuron positions (net.layers{i}.positions) from the layer’s
dimensions (net.layers{i}.dimensions).

For a list of functions, type help nntopology.

Side Effects. Whenever this property is altered, the positions of the layer’s
neurons (net.layers{i}.positions) are updated.

Use plotsom to plot the positions of the layer neurons. For instance,
if the first-layer neurons of a network are arranged with dimensions
(net.layers{1}.dimensions) of [8 10] and the topology function
(net.layers{1}.topologyFcn) is randtop, the neuron positions are arranged
to resemble the following plot:

plotsom(net.layers{1}.positions)
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net.layers{i}.transferFcn
This function defines which of the transfer functions is used to calculate the
ith layer’s output, given the layer’s net input, during simulation and training.

For a list of functions, type help nntransfer.

net.layers{i}.transferParam
This property defines the parameters of the layer’s transfer function. Call
help on the current transfer function to get a description of what each field
means:

help(net.layers{i}.transferFcn)

net.layers{i}.userdata
This property provides a place for users to add custom information to the
ith network layer.
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Outputs

net.outputs{i}.name
This property consists of a string defining the output name. Network creation
functions, such as feedforwardnet, define this appropriately. But it can be
set to any string as desired.

net.outputs{i}.feedbackInput
If the output implements open-loop feedback (net.outputs{i}.feedbackMode
= 'open'), then this property indicates the index of the associated feedback
input, otherwise it will be an empty matrix.

net.outputs{i}.feedbackDelay
This property defines the timestep difference between this output and
network inputs. Input-to-output network delays can be removed and added
with removedelay and adddelay functions resulting in this property being
incremented or decremented respectively. The difference in timing between
inputs and outputs is used by preparets to properly format simulation and
training data, and used by closeloop to add the correct number of delays
when closing an open-loop output, and openloop to remove delays when
opening a closed loop.

net.outputs{i}.feedbackMode
This property is set to the string 'none' for non-feedback outputs. For
feedback outputs it can either be set to 'open' or 'closed'. If it is set to
'open', then the output will be associated with a feedback input, with the
property feedbackInput indicating the input’s index.

net.outputs{i}.processFcns
This property defines a row cell array of processing function names to be used
by the ith network output. The processing functions are applied to target
values before the network uses them, and applied in reverse to layer output
values before being returned as network output values.
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Side Effects. When you change this property, you also affect the following
settings: the output parameters processParams are modified to the
default values of the specified processing functions; processSettings,
processedSize, and processedRange are defined using the results of
applying the process functions and parameters to exampleOutput; the ith
layer size is updated to match the processedSize.

For a list of functions, type help nnprocess.

net.outputs{i}.processParams
This property holds a row cell array of processing function parameters to be
used by ith network output on target values. The processing parameters
are applied by the processing functions to input values before the network
uses them.

Side Effects. Whenever this property is altered, the output processSettings,
processedSize and processedRange are defined by applying the process
functions and parameters to exampleOutput. The ith layer’s size is also
updated to match processedSize.

net.outputs{i}.processSettings (read only)
This property holds a row cell array of processing function settings to be used
by ith network output. The processing settings are found by applying the
processing functions and parameters to exampleOutput and then used to
provide consistent results to new target values before the network uses them.
The processing settings are also applied in reverse to layer output values
before being returned by the network.

net.outputs{i}.processedRange (read only)
This property defines the range of exampleOutput values after they have been
processed with processingFcns and processingParams.

net.outputs{i}.processedSize (read only)
This property defines the number of rows in the exampleOutput values after
they have been processed with processingFcns and processingParams.
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net.outputs{i}.size (read only)
This property defines the number of elements in the ith layer’s output. It is
always set to the size of the ith layer (net.layers{i}.size).

net.outputs{i}.userdata
This property provides a place for users to add custom information to the
ith layer’s output.

Biases

net.biases{i}.initFcn
This property defines the weight and bias initialization functions used to set
the ith layer’s bias vector (net.b{i}) if the network initialization function is
initlay and the ith layer’s initialization function is initwb.

net.biases{i}.learn
This property defines whether the ith bias vector is to be altered during
training and adaption. It can be set to 0 or 1.

It enables or disables the bias’s learning during calls to adapt and train.

net.biases{i}.learnFcn
This property defines which of the learning functions is used to update the
ith layer’s bias vector (net.b{i}) during training, if the network training
function is trainb, trainc, or trainr, or during adaption, if the network
adapt function is trains.

For a list of functions, type help nnlearn.

Side Effects. Whenever this property is altered, the biases learning
parameters (net.biases{i}.learnParam) are set to contain the fields and
default values of the new function.
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net.biases{i}.learnParam
This property defines the learning parameters and values for the current
learning function of the ith layer’s bias. The fields of this property depend on
the current learning function. Call help on the current learning function to
get a description of what each field means.

net.biases{i}.size (read only)
This property defines the size of the ith layer’s bias vector. It is always set
to the size of the ith layer (net.layers{i}.size).

net.biases{i}.userdata
This property provides a place for users to add custom information to the
ith layer’s bias.

Input Weights

net.inputWeights{i,j}.delays
This property defines a tapped delay line between the jth input and its weight
to the ith layer. It must be set to a row vector of increasing values. The
elements must be either 0 or positive integers.

Side Effects. Whenever this property is altered, the weight’s size
(net.inputWeights{i,j}.size) and the dimensions of its weight matrix
(net.IW{i,j}) are updated.

net.inputWeights{i,j}.initFcn
This property defines which of the Weight and Bias Initialization Functions is
used to initialize the weight matrix (net.IW{i,j}) going to the ith layer from
the jth input, if the network initialization function is initlay, and the ith
layer’s initialization function is initwb. This function can be set to the name
of any weight initialization function.
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net.inputWeights{i,j}.initSettings (read only)
This property is set to values useful for initializing the weight as part of the
configuration process that occurs automatically the first time a network is
trained, or when the function configure is called on a network directly.

net.inputWeights{i,j}.learn
This property defines whether the weight matrix to the ith layer from the jth
input is to be altered during training and adaption. It can be set to 0 or 1.

net.inputWeights{i,j}.learnFcn
This property defines which of the learning functions is used to update the
weight matrix (net.IW{i,j}) going to the ith layer from the jth input during
training, if the network training function is trainb, trainc, or trainr, or
during adaption, if the network adapt function is trains. It can be set to the
name of any weight learning function.

For a list of functions, type help nnlearn.

net.inputWeights{i,j}.learnParam
This property defines the learning parameters and values for the current
learning function of the ith layer’s weight coming from the jth input.

The fields of this property depend on the current learning function
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the
fields of the current learning function.

Call help on the current learning function to get a description of what each
field means.

net.inputWeights{i,j}.size (read only)
This property defines the dimensions of the ith layer’s weight matrix from the
jth network input. It is always set to a two-element row vector indicating the
number of rows and columns of the associated weight matrix (net.IW{i,j}).
The first element is equal to the size of the ith layer (net.layers{i}.size).
The second element is equal to the product of the length of the weight’s delay
vectors and the size of the jth input:
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length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

net.inputWeights{i,j}.userdata
This property provides a place for users to add custom information to the
(i,j)th input weight.

net.inputWeights{i,j}.weightFcn
This property defines which of the weight functions is used to apply the ith
layer’s weight from the jth input to that input. It can be set to the name of
any weight function. The weight function is used to transform layer inputs
during simulation and training.

For a list of functions, type help nnweight.

net.inputWeights{i,j}.weightParam
This property defines the parameters of the layer’s net input function. Call
help on the current net input function to get a description of each field.

Layer Weights

net.layerWeights{i,j}.delays
This property defines a tapped delay line between the jth layer and its weight
to the ith layer. It must be set to a row vector of increasing values. The
elements must be either 0 or positive integers.

net.layerWeights{i,j}.initFcn
This property defines which of the weight and bias initialization functions is
used to initialize the weight matrix (net.LW{i,j}) going to the ith layer from
the jth layer, if the network initialization function is initlay, and the ith
layer’s initialization function is initwb. This function can be set to the name
of any weight initialization function.
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net.layerWeights{i,j}.initSettings (read only)
This property is set to values useful for initializing the weight as part of the
configuration process that occurs automatically the first time a network is
trained, or when the function configure is called on a network directly.

net.layerWeights{i,j}.learn
This property defines whether the weight matrix to the ith layer from the jth
layer is to be altered during training and adaption. It can be set to 0 or 1.

net.layerWeights{i,j}.learnFcn
This property defines which of the learning functions is used to update the
weight matrix (net.LW{i,j}) going to the ith layer from the jth layer during
training, if the network training function is trainb, trainc, or trainr, or
during adaption, if the network adapt function is trains. It can be set to the
name of any weight learning function.

For a list of functions, type help nnlearn.

net.layerWeights{i,j}.learnParam
This property defines the learning parameters fields and values for the
current learning function of the ith layer’s weight coming from the jth layer.
The fields of this property depend on the current learning function. Call help
on the current net input function to get a description of each field.

net.layerWeights{i,j}.size (read only)
This property defines the dimensions of the ith layer’s weight matrix from the
jth layer. It is always set to a two-element row vector indicating the number
of rows and columns of the associated weight matrix (net.LW{i,j}). The
first element is equal to the size of the ith layer (net.layers{i}.size). The
second element is equal to the product of the length of the weight’s delay
vectors and the size of the jth layer.

net.layerWeights{i,j}.userdata
This property provides a place for users to add custom information to the
(i,j)th layer weight.
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net.layerWeights{i,j}.weightFcn
This property defines which of the weight functions is used to apply the ith
layer’s weight from the jth layer to that layer’s output. It can be set to the
name of any weight function. The weight function is used to transform layer
inputs when the network is simulated.

For a list of functions, type help nnweight.

net.layerWeights{i,j}.weightParam
This property defines the parameters of the layer’s net input function. Call
help on the current net input function to get a description of each field.
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A Mathematical Notation

Mathematical Notation for Equations and Figures

Basic Concepts

Description Example

Scalars Small italic letters a, b, c

Vectors Small bold nonitalic letters a, b, c

Matrices Capital BOLD nonitalic letters A, B, C

Language
Vector means a column of numbers.

Weight Matrices

Scalar element wi,j

Matrix W

Column vector wj

Row vector iw Vector made of ith row of weight matrixW

Bias Elements and Vectors

Scalar element bi

Bias vector b

Time and Iteration

Weight matrix at time t W(t)

Weight matrix on iteration k W(k)
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Layer Notation
A single superscript is used to identify elements of a layer. For instance, the
net input of layer 3 would be shown as n3.

Superscripts k, l are used to identify the source (l) connection and the
destination (k) connection of layer weight matrices and input weight matrices.
For instance, the layer weight matrix from layer 2 to layer 4 would be shown
as LW4,2.

Input weight matrix IWk, l

Layer weight matrix LWk, l

Figure and Equation Examples
The following figure illustrates notation used in such advanced figures.
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Mathematics and Code Equivalents
The transition from mathematics to code or vice versa can be made with the
aid of a few rules. They are listed here for reference.

Mathematics Notation to MATLAB Notation
To change from mathematics notation to MATLAB notation:

• Change superscripts to cell array indices. For example,

p p1 1→ { }

• Change subscripts to indices within parentheses. For example,

p p2 2→ ( )

and

p p2
1 1 2→ { }( )

• Change indices within parentheses to a second cell array index. For
example,

p k p k1 1 1 1( ) { , }− → −

• Change mathematics operators to MATLAB operators and toolbox
functions. For example,

ab a b→ ∗

Figure Notation
The following equations illustrate the notation used in figures.

n w p w p p bR R= + + + +1 1 1 1 2 2 12, , ,...
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W

w w w

w w w

w w w

R

R

S S S R

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

...

...

...
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B Blocks for the Simulink Environment

Block Library
The Neural Network Toolbox product provides a set of blocks you can use to
build neural networks using Simulink software, or that the function gensim
can use to generate the Simulink version of any network you have created
using MATLAB software.

Open the Neural Network Toolbox block library with the command:

neural

This opens a library window that contains five blocks. Each of these blocks
contains additional blocks.

Transfer Function Blocks
Double-click the Transfer Functions block in the Neural library window to
open a window containing several transfer function blocks.
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Block Library

Each of these blocks takes a net input vector and generates a corresponding
output vector whose dimensions are the same as the input vector.

Net Input Blocks
Double-click the Net Input Functions block in the Neural library window to
open a window containing two net-input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer
output vectors, and bias vectors, and returns a net-input vector.

Weight Blocks
Double-click the Weight Functions block in the Neural library window to open
a window containing three weight function blocks.

Each of these blocks takes a neuron’s weight vector and applies it to an input
vector (or a layer output vector) to get a weighted input value for a neuron.
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It is important to note that these blocks expect the neuron’s weight vector to
be defined as a column vector. This is because Simulink signals can be column
vectors, but cannot be matrices or row vectors.

It is also important to note that because of this limitation you have to create
S weight function blocks (one for each row), to implement a weight matrix
going to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function
and one transfer function block are required for each layer.

Processing Blocks
Double-click the Processing Functions block in the Neural library window
to open a window containing processing blocks and their corresponding
reverse-processing blocks.

Each of these blocks can be used to preprocess inputs and postprocess outputs.
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Block Generation
The function gensim generates block descriptions of networks so you can
simulate them using Simulink software.

gensim(net,st)

The second argument to gensim determines the sample time, which is
normally chosen to be some positive real value.

If a network has no delays associated with its input weights or layer weights,
this value can be set to -1. A value of -1 causes gensim to generate a network
with continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets
t.

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

You can test the network on your original inputs with sim.

y = sim(net,p)

The results show the network has solved the problem.

y =
1.0000 3.0000 5.0000 7.0000 9.0000

Call gensim as follows to generate a Simulink version of the network.

gensim(net,-1)

The second argument is -1, so the resulting network block samples
continuously.

B-5



B Blocks for the Simulink Environment

The call to gensim opens the following Simulink Editor, showing a system
consisting of the linear network connected to a sample input and a scope.

To test the network, double-click the input Constant x1 block on the left.

The input block is actually a standard Constant block. Change the constant
value from the initial randomly generated value to 2, and then click OK.
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Select the menu option Simulation > Run. Simulink takes a moment to
simulate the system.

When the simulation is complete, double-click the output y1 block on the right
to see the following display of the network’s response.

Note that the output is 3, which is the correct output for an input of 2.

Suggested Exercises
Here are a couple exercises you can try.

Change the Input Signal
Replace the constant input block with a signal generator from the standard
Simulink Sources blockset. Simulate the system and view the network’s
response.

Use a Discrete Sample Time
Recreate the network, but with a discrete sample time of 0.5, instead of
continuous sampling.

gensim(net,0.5)

Again, replace the constant input with a signal generator. Simulate the
system and view the network’s response.
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C Code Notes

Dimensions
The following code dimensions are used in describing both the network signals
that users commonly see, and those used by the utility functions:

Ni = Number of network inputs = net.numInputs

Ri = Number of elements in input i = net.inputs{i}.size

Nl = Number of layers = net.numLayers

Si = Number of neurons in layer i = net.layers{i}.size

Nt = Number of targets

Vi = Number of elements in target
i, equal to Sj, where j is the ith
layer with a target. (A layer n has a
target if net.targets(n) == 1.)

No = Number of network outputs

Ui = Number of elements in output
i, equal to Sj, where j is the ith
layer with an output (A layer n has
an output if net.outputs(n) == 1.)

ID = Number of input delays = net.numInputDelays

LD = Number of layer delays = net.numLayerDelays

TS = Number of time steps

Q = Number of concurrent vectors
or sequences
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Variables

Variables
The variables a user commonly uses when defining a simulation or training
session are

P Network inputs Ni-by-TS cell array, where each element
P{i,ts} is an Ri-by-Q matrix

Pi Initial input delay
conditions

Ni-by-ID cell array, where each element
Pi{i,k} is an Ri-by-Q matrix

Ai Initial layer delay
conditions

Nl-by-LD cell array, where each element
Ai{i,k} is an Si-by-Q matrix

T Network targets Nt-by-TS cell array, where each element
P{i,ts} is a Vi-by-Q matrix

These variables are returned by simulation and training calls:

Y Network outputs No-by-TS cell array, where each element
Y{i,ts} is a Ui-by-Q matrix

E Network errors Nt-by-TS cell array, where each element
P{i,ts} is a Vi-by-Q matrix

perf Network
performance
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C Code Notes

Utility Function Variables
These variables are used only by the utility functions.

Pc Combined inputs Ni-by-(ID+TS) cell array, where each element
P{i,ts} is an Ri-by-Q matrix

Pc = [Pi P] = Initial input delay conditions
and network inputs

Pd Delayed inputs Ni-by-Nj-by-TS cell array, where each
element Pd{i,j,ts} is an (Ri*IWD(i,j))-by-Q
matrix, and where IWD(i,j) is the number of
delay taps associated with the input weight
to layer i from input j

Equivalently,

IWD(i,j) = length(net.inputWeights{i,j}.delays)

Pd is the result of passing the elements of P
through each input weight’s tap delay lines.
Because inputs are always transformed by
input delays in the same way, it saves time
to do that operation only once instead of for
every training step.

BZ Concurrent bias
vectors

Nl-by-1 cell array, where each element BZ{i}
is an Si-by-Q matrix

Each matrix is simply Q copies of the
net.b{i} bias vector.

IWZ Weighted inputs Ni-by-Nl-by-TS cell array, where each
element IWZ{i,j,ts} is an Si-by-???-by-Q
matrix

LWZ Weighted layer
outputs

Ni-by-Nl-by-TS cell array, where each
element LWZ{i,j,ts} is an Si-by-Q matrix

N Net inputs Ni-by-TS cell array, where each element
N{i,ts} is an Si-by-Q matrix

A Layer outputs Nl-by-TS cell array, where each element
A{i,ts} is an Si-by-Q matrix
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Variables

Ac Combined layer
outputs

Nl-by-(LD+TS) cell array, where each element
A{i,ts} is an Si-by-Q matrix

Ac = [Ai A] = Initial layer delay conditions
and layer outputs.

Tl Layer targets Nl-by-TS cell array, where each element
Tl{i,ts} is an Si-by-Q matrix

Tl contains empty matrices [] in rows of
layers i not associated with targets, indicated
by net.targets(i) == 0.

El Layer errors Nl-by-TS cell array, where each element
El{i,ts} is an Si-by-Q matrix

El contains empty matrices [] in rows of
layers i not associated with targets, indicated
by net.targets(i) == 0.

X Column vector of
all weight and bias
values
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C Code Notes

Functions
The following functions are the utility functions that you can call to perform a
lot of the work of simulating or training a network. You can read about them
in their respective help comments.

These functions calculate signals.

calcpd, calca, calca1, calce, calce1, calcperf

These functions calculate derivatives, Jacobians, and values associated with
Jacobians.

calcgx, calcjx, calcjejj

calcgx is used for gradient algorithms; calcjx and calcjejj can be
used for calculating approximations of the Hessian for algorithms like
Levenberg-Marquardt.

These functions allow network weight and bias values to be accessed and
altered in terms of a single vector X.

setx, getx, formx
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Code Efficiency

Code Efficiency
The functions sim, train, and adapt all convert a network object to a
structure,

net = struct(net);

before simulation and training, and then recast the structure back to a
network.

net = class(net,'network')

This is done for speed efficiency since structure fields are accessed directly,
while object fields are accessed using the MATLAB object method handling
system. If users write any code that uses utility functions outside of sim,
train, or adapt, they should use the same technique.
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C Code Notes

Argument Checking
These functions are only recommended for advanced users.

None of the utility functions do any argument checking, which means that
the only feedback you get from calling them with incorrectly sized arguments
is an error.

The lack of argument checking allows these functions to run as fast as
possible.

For “safer” simulation and training, use sim, train, and adapt.
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IndexA
ADALINE networks

decision boundary 9-21
adapt 1-30
adaptFcn

function property 10-9
adaptive filters

example 7-11
noise cancelation example 7-15
prediction example 7-14
training 1-30

adaptive linear networks 7-2
adaptParam

function property 10-9
applications

adaptive filtering 7-10
architecture

bias connection 8-47
input connection 8-48
layer connection 8-48
number of inputs 8-47
number of layers 8-47
number of outputs 8-49
number of targets 8-49
output connection 8-49
target connection 8-49

architecture properties 10-3

B
b

bias vector property 10-13
backpropagation

algorithm 2-16
batch algorithm 6-11
batch training

compared 1-30
definition 1-33
dynamic networks 1-35
static networks 1-33

batch training algorithm 6-31
Bayesian framework 8-38
benchmark data sets 8-41
biasConnect

architecture property 10-4
biases

connection 8-47
definition 1-4
subobject 8-53
subobject and network object 10-25
subobject property 10-8
value 8-55

box distance 6-17

C
cachDelayedInputs efficiency property 10-2
cell arrays

bias vectors 8-56
input P 1-28
input vectors 8-57
inputs 1-32
inputs property 8-49
layers property 8-51
matrix of concurrent vectors 1-28
matrix of sequential vectors 1-31
sequence of outputs 1-27
sequential inputs 1-26
targets 1-32
weight matrices 8-56

classification
input vectors 9-4
linear 9-29
regions 9-4
using probabilistic neural networks 5-10

competitive layers 6-3
competitive neural networks

creating 6-4
example 6-8

competitive transfer functions 6-3
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concurrent inputs
compared 1-24

configuration settings
definition 1-22

configure
definition 1-21

continuous stirred tank reactor example 4-6
control

control design 4-2
electromagnet 4-18
feedback linearization 4-14
feedback linearization (NARMA-L2) 4-3
model predictive 4-3
model predictive control 4-5
model reference 4-3
NARMA-L2 4-14
plant 4-23
plant for predictive control 4-2
robot arm 4-24
time horizon 4-5
training data 4-10

controller
NARMA-L2 controller 4-16

CSTR 4-6
custom neural networks 8-45

D
data

test 2-11
training 2-11
validation 2-11

dead neurons 6-6
decision boundary 9-21

definition 9-4
delays

input weight property 10-26
layer weight property 10-28

derivFcn
function property 10-9

dimensions
layer property 10-17

distance 6-10
box 6-17
Euclidean 6-16
link 6-17
Manhattan 6-17
tuning phase 6-19

distance functions 6-15
distanceFcn

layer property 10-18
distances

layer property 10-18
divideFcn

function property 10-10
divideMode

function property 10-10
divideParam

function property 10-10
dynamic networks

concurrent inputs 1-27
sequential inputs 1-25
training

batch 1-35
incremental 1-32

E
early stopping

improving generalization 8-35
electromagnet example 4-18
error weighting 3-40
Euclidean distance 6-16
examples

continuous stirred tank reactor 4-6
demohop1 9-40
demohop2 9-40
demorb4 5-8
electromagnet 4-18
nnd10lc 9-31
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nnd11gn 8-34
robot arm 4-24

exporting networks 4-31
exporting training data 4-35

F
feedback linearization 4-2

companion form model 4-14
See also NARMA-L2

feedbackDelay output property 10-23
feedbackInput output property 10-23
feedbackMode output property 10-23
feedforward networks 2-6
finite impulse response filters

example 9-26
flattenTime efficiency property 10-2

G
generalization

improving 8-34
regularization 8-37

generalized regression networks 5-13
gridtop topology 6-11

H
hard limit transfer function

hardlim 9-3
hextop topology 6-13
hidden layers

definition 1-13
home neuron 6-16
Hopfield networks

architecture 9-34
design equilibrium point 9-36
solution trajectories 9-40
spurious equilibrium points 9-36
stable equilibrium point 9-36
target equilibrium points 9-36

horizon 4-5

I
importing networks 4-31
importing training data 4-35
incremental training 1-30

static networks 1-30
initFcn

bias property 10-25
function property 10-10
input weight property 10-26
layer property 10-18
layer weight property 10-28

initParam
function property 10-11
parameter property 10-9

initSettings
input weight property 10-27
layer weight property 10-29

input vectors
classification 9-4
distance 6-10
outlier 9-17
topology 6-10

input weights
definition 1-12
subobject 10-26

inputConnect
architecture property 10-4

inputs
concurrent 1-24
connection 8-48
input property 10-15
number 8-47
sequential 1-24
subobject 8-49
subobject property 10-7

inputWeights
subobject property 10-8
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IW
weight property 10-12

K
Kohonen learning rule 6-5

L
layer weights

definition 1-12
subobject 10-28

layerConnect
architecture property 10-5

layers
connection 8-48
number 8-47
subobject 8-51
subobject property 10-7

layers property 10-17
layerWeights

subobject property 10-8
learn

bias property 10-25
input weight property 10-27
layer weight property 10-29

learnFcn
bias property 10-25
input weight property 10-27
layer weight property 10-29

learning rates
maximum stable 9-29
ordering phase 6-19
too large 9-32
tuning phase 6-19

learning rules
Kohonen 6-5
LMS 7-2

See also Widrow-Hoff learning rule
LVQ1 6-41

LVQ2.1 6-45
perceptron 9-3
Widrow-Hoff 9-27

learning vector quantization
creation 6-38
learning rule 6-45

LVQ1 6-41
LVQ network 6-37
subclasses 6-37
supervised training 6-2
target classes 6-37
union of two subclasses 6-41

learnParam
bias property 10-26
input weight property 10-27
layer weight property 10-29

least mean square error learning rule 7-8
linear networks

design 9-23
linear transfer functions 9-19
linearly dependent vectors 9-32
link distance 6-17
log-sigmoid transfer function

logsig 2-4
log-sigmoid transfer functions 1-5
LVQ networks 6-37
LW

weight property 10-13

M
MADALINE networks 7-4
magnet 4-18
Manhattan distance 6-17
mean square error function 2-16

least 7-8
memory reduction 2-19
memoryReduction efficiency property 10-3
model predictive control 4-5
model reference control 4-2
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Model Reference Control block 4-24

N
name input property 10-15
name layer property 10-17
name network property 10-2
name output property 10-23
NARMA-L2 control 4-14
NARMA-L2 controller 4-16
NARMA-L2 Controller block 4-18
neighbor distances plot 6-33
neighborhood 6-10
net input function

definition 1-4
netInputFcn

layer property 10-18
netInputParam

layer property 10-19
network functions 8-54
network layers

competitive 6-3
definition 1-8

networks
definition 8-46
dynamic

concurrent inputs 1-27
sequential inputs 1-25

static 1-24
neural networks

adaptive linear 7-2
competitive 6-4
custom 8-45
feedforward 2-6
generalized regression 5-13
one-layer 1-10

figure 9-19
probabilistic 5-10
radial basis 5-2
self-organizing 6-2

self-organizing feature map 6-10
neurons 1-4

dead (not allocated) 6-5
definition 1-4
home 6-16
See also distance, topologies

NN Predictive Control block 4-6
notation

abbreviated 1-7
layer 1-13
transfer function symbols 1-6

numInputDelays
architecture property 10-6

numInputs
architecture property 10-3

numLayerDelays
architecture property 10-6

numLayers
architecture property 10-3

numOutputs
architecture property 10-5

numWeightElements
architecture property 10-6

O
ordering phase learning rate 6-19
outlier input vectors 9-17
output layers

definition 1-13
linear 2-6

outputConnect
architecture property 10-5

outputs
connection 8-49
number 8-49
subobject 8-52
subobject properties 10-23
subobject property 10-7

overdetermined systems 9-32

Index-5



Index

overfitting 8-34

P
pass

definition 9-11
perceptron learning rule 9-3

learnp 9-8
normalized 9-17

perceptron network
limitations 9-16

perceptron networks
introduction 9-3

performance functions
modifying 8-37

performFcn
function property 10-11

performParam
function property 10-11

plant 4-23
plant identification 4-23

NARMA-L2 model 4-14
Plant Identification window 4-9
plant model 4-2

in model predictive control 4-3
plotFcns

function property 10-11
plotParams

function property 10-12
positions

layer property 10-19
posttraining analysis 8-43
predictive control 4-5
preprocessing 2-8
probabilistic neural networks 5-10

design 5-11
process parameters

definition 1-22
properties that determine algorithms 10-9

R
radial basis

design 5-15
efficient network 5-7
function 5-2
networks 5-2

radial basis transfer function 5-4
randtop topology 6-14
range

layer property 10-20
recurrent networks 9-2
regularization 8-37

automated 8-38
robot arm example 4-24

S
sample hits plot 6-34
self-organizing feature map (SOFM)

networks 6-10
batch algorithm 6-11
neighbor distances plot 6-33
neighborhood 6-10
one-dimensional example 6-25
sample hits plot 6-34
two-dimensional example 6-27
weight planes plot 6-35
weight positions plot 6-32

self-organizing networks 6-2
sequential inputs 1-24
simulation 2-29
Simulink

generating networks B-5
Neural Network Toolbox block library

simulation B-2
NNT blockset code C-2

size
bias property 10-26
bias vector property 10-26
input property 10-17
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input weight property 10-27
layer property 10-20
layer weight property 10-29
output property 10-25

spread constant 5-6
static networks

batch training 1-33
concurrent inputs 1-24
defined 1-24
incremental training 1-30
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network definition 8-49

subobject structure properties 10-7
subobjects

bias code 8-53
bias definition 10-25
input 8-49
input weight properties 10-26
layer 8-51
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output code 8-52
output definition 10-23
target code 8-52
weight code 8-53
weight definition 10-25
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transfer function representation 1-6

system identification 4-4

T
tan-sigmoid transfer function 2-4
tapped delay lines 9-24
targets

connection 8-49
number 8-49
subobject 8-52

time horizon 4-5
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self-organizing feature map 6-10

topologies for SOFM neuron locations
gridtop 6-11
hextop 6-13
randtop 6-14
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layer property 10-21

trainFcn
function property 10-12

training
batch 1-30
competitive networks 6-7
definition 1-5
efficient 2-8
incremental 1-30
ordering phase 6-22
posttraining analysis 8-43
self-organizing feature map 6-22
styles 1-30
tuning phase 6-22

training data 4-10
training record 2-24
training styles 1-30
trainParam
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transfer functions

competitive 6-3
definition 1-4
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linear 9-19
log-sigmoid 1-5
log-sigmoid in backpropagation 2-4
radial basis 5-4
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transferFcn
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transferParam
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tuning phase learning rate 6-19
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U
underdetermined systems 9-32
userdata network property 10-2

V
vectors

linearly dependent 9-32

W
weight and bias value properties 10-12
weight function

definition 1-4
weight matrix

definition 1-10
weight planes plot 6-35

weight positions plot 6-32
weightFcn

input weight property 10-28
layer weight property 10-30

weightParam
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weights
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